通过AI中台转换模型并下发至边缘

智能边缘 BIE

  • 产品描述
    • 名词解释
    • 使用限制
    • 产品概述
    • 产品优势
    • 应用场景
  • 配置文件说明
    • baetyl-rule
    • baetyl-remote-object
    • baetyl-function
    • baetyl-broker
  • 快速入门
    • 融合模式节点安装
    • 快速入门指南
    • 离线安装k3s+docker
    • 进程模式节点安装
      • 在linux上安装
      • 在windows上安装
  • 典型实践
    • OPC-UA使用
    • 使用BIE函数计算调用文心一言
    • 边缘规则引擎实战
      • 集成Kuiper流式计算引擎
      • 边缘规则实例
    • 将AI中台模型部署至边缘节点
      • 获取AI中台模型部署包进行应用部署
      • 部署模型SDK至Atlas200DK
      • 模型中心1.0
        • 通过AI中台转换模型并下发至边缘
        • 通过AI中台直接将模型下发至边缘
      • 模型中心2.0
        • 将物体检测模型部署至边缘
        • 将图像分类模型部署至边缘
    • 部署PaddleServing模型
      • 使用BIE下发PaddleOCR模型
      • 制作GPU版本Paddle Serving推理镜像
      • 通过BIE部署Paddle Serving
    • Modbus协议采集温湿度传感器
      • 连接边缘baetyl-broker
      • 使用内置modbus驱动采集数据并进行边缘函数计算
      • 数据从baetyl-broker上传至IoTCore
    • 部署EasyDL模型SDK
      • 部署EasyDL烟火检测模型至ARM64节点
    • 部署EasyEdge模型SDK
      • 进程模式下发python SDK模型
      • 使用EasyEdge模型转换获取边缘模型
      • 部署模型SDK至Windows设备
      • 部署模型SDK至Intel Movidius设备
      • 部署模型SDK至Jetson Xavier
    • 部署自定义容器镜像模型
      • 部署mnist手写数字识别模型
      • 部署物体检测模型
    • video-infer实现边缘视频AI推断
      • 使用Movidius VPU加速边缘视频推断
      • 使用CPU实现边缘视频推断
  • 操作指南
    • 主子用户鉴权
    • 设备管理
      • 设备模拟器
      • 子设备数据云边交互方式
      • 进程模式软网关设备接入指南
      • 子设备数据云边交互方式-v2
      • 视频流管理
        • IPC子设备和驱动
        • 边缘转发RTSP视频流
      • 设备接入
        • 设备模型管理
        • 接入模板
        • 设备管理
        • 子设备绑定
      • 驱动管理
        • 进程模式软网关自定义驱动开发
        • 驱动管理
        • GO语言实现示例
        • 自定义驱动开发指南
      • 不同协议设备接入
        • BACnet设备接入
        • OPC-UA设备接入
        • Modbus 设备接入
        • IEC104设备接入
        • OPC-DA设备接入
    • 节点管理
      • 边缘应用获取云端STS鉴权
      • 进程模式节点
      • 远程MQTT消息下发
      • 节点运行模式说明
      • 节点影子
      • 远程调用
      • 容器模式节点
      • 远程调试
      • 远程SSH边缘节点
      • 边缘节点OpenAPI
      • 证书管理
      • 节点预配
    • 业务编排
      • 单元管理
      • 技能管理
      • 常见技能
    • 应用管理
      • 业务模版
      • 应用部署
        • 应用运行模式与分类说明
        • 函数应用
          • 自定义函数与依赖包解耦下发
          • 从CFC引入多个函数下发
          • 典型使用说明
          • 使用函数调用边缘AI模型
          • 自定义函数与依赖包整体下发
        • 容器应用
          • subpath子路径使用说明
          • workdir工作目录使用说明
          • Job类型容器应用
          • 容器应用状态说明
          • 原生yaml接入使用说明
          • 端口映射说明
          • 容器应用工作负载类型说明
          • Deployment类型容器应用
          • DaemonSet类型容器应用
          • QPS监控
          • emptyDir卷使用说明
          • 边缘服务调用
        • 进程应用
          • 进程应用概述
          • 可执行二进制程序类型进程应用
          • 可执行脚本类型进程应用
      • 配置管理
        • 证书
        • 函数
        • 镜像仓库凭证
        • 配置项
        • 密文
        • 镜像
        • 进程程序包
    • AI加速卡
      • AI加速卡通用资源调度方法
      • 自定义加速卡算力指标采集
      • 华为昇腾
        • 昇腾310资源监控
      • 英伟达
        • GPU资源调度-显存隔离
        • Jetson资源监控
        • GPU资源调度-显存共享
        • Jetson依赖说明
        • NVIDIA GPU资源监控
      • 寒武纪
        • MLU270资源监控
      • 百度昆仑
        • 昆仑芯片资源监控
      • 比特大陆
        • 挂载比特大陆边缘计算盒子tpu资源
        • BM-SE5资源监控
  • 服务等级协议SLA
    • 服务等级协议SLA(V1.0)
  • 备份
    • 进程模式应用
    • 部署通用CPU模型
    • 部署模型SDK至Atlas200DK
    • 适配列表
    • 连接边缘节点本地baetyl-broker
    • 使用自定义modbus应用采集
    • NVIDIA GPU资源管理
    • FAQ
    • NVIDIA Jetson专用模型部署-进程模式
    • 容器模式应用
    • 连接边缘节点本地baetyl-broker服务
    • DaemonSet类型和job类型服务部署
    • 通用CPU模型部署-容器模式
    • NVIDIA Jetson专用模型部署-容器模式
    • 功能发布记录
    • 在BIE控制台部署从AI中台下载的模型
    • EasyEdge概述
    • Nvidia_Jetson
      • 使用NVIDIA官方镜像运行模型-容器模式
      • 二进制程序运行模型-进程模式
      • 使用edgekit镜像运行模型-容器模式
    • 下载专区
      • 相关资源下载
  • 产品定价
    • 产品定价
所有文档
menu
没有找到结果,请重新输入

智能边缘 BIE

  • 产品描述
    • 名词解释
    • 使用限制
    • 产品概述
    • 产品优势
    • 应用场景
  • 配置文件说明
    • baetyl-rule
    • baetyl-remote-object
    • baetyl-function
    • baetyl-broker
  • 快速入门
    • 融合模式节点安装
    • 快速入门指南
    • 离线安装k3s+docker
    • 进程模式节点安装
      • 在linux上安装
      • 在windows上安装
  • 典型实践
    • OPC-UA使用
    • 使用BIE函数计算调用文心一言
    • 边缘规则引擎实战
      • 集成Kuiper流式计算引擎
      • 边缘规则实例
    • 将AI中台模型部署至边缘节点
      • 获取AI中台模型部署包进行应用部署
      • 部署模型SDK至Atlas200DK
      • 模型中心1.0
        • 通过AI中台转换模型并下发至边缘
        • 通过AI中台直接将模型下发至边缘
      • 模型中心2.0
        • 将物体检测模型部署至边缘
        • 将图像分类模型部署至边缘
    • 部署PaddleServing模型
      • 使用BIE下发PaddleOCR模型
      • 制作GPU版本Paddle Serving推理镜像
      • 通过BIE部署Paddle Serving
    • Modbus协议采集温湿度传感器
      • 连接边缘baetyl-broker
      • 使用内置modbus驱动采集数据并进行边缘函数计算
      • 数据从baetyl-broker上传至IoTCore
    • 部署EasyDL模型SDK
      • 部署EasyDL烟火检测模型至ARM64节点
    • 部署EasyEdge模型SDK
      • 进程模式下发python SDK模型
      • 使用EasyEdge模型转换获取边缘模型
      • 部署模型SDK至Windows设备
      • 部署模型SDK至Intel Movidius设备
      • 部署模型SDK至Jetson Xavier
    • 部署自定义容器镜像模型
      • 部署mnist手写数字识别模型
      • 部署物体检测模型
    • video-infer实现边缘视频AI推断
      • 使用Movidius VPU加速边缘视频推断
      • 使用CPU实现边缘视频推断
  • 操作指南
    • 主子用户鉴权
    • 设备管理
      • 设备模拟器
      • 子设备数据云边交互方式
      • 进程模式软网关设备接入指南
      • 子设备数据云边交互方式-v2
      • 视频流管理
        • IPC子设备和驱动
        • 边缘转发RTSP视频流
      • 设备接入
        • 设备模型管理
        • 接入模板
        • 设备管理
        • 子设备绑定
      • 驱动管理
        • 进程模式软网关自定义驱动开发
        • 驱动管理
        • GO语言实现示例
        • 自定义驱动开发指南
      • 不同协议设备接入
        • BACnet设备接入
        • OPC-UA设备接入
        • Modbus 设备接入
        • IEC104设备接入
        • OPC-DA设备接入
    • 节点管理
      • 边缘应用获取云端STS鉴权
      • 进程模式节点
      • 远程MQTT消息下发
      • 节点运行模式说明
      • 节点影子
      • 远程调用
      • 容器模式节点
      • 远程调试
      • 远程SSH边缘节点
      • 边缘节点OpenAPI
      • 证书管理
      • 节点预配
    • 业务编排
      • 单元管理
      • 技能管理
      • 常见技能
    • 应用管理
      • 业务模版
      • 应用部署
        • 应用运行模式与分类说明
        • 函数应用
          • 自定义函数与依赖包解耦下发
          • 从CFC引入多个函数下发
          • 典型使用说明
          • 使用函数调用边缘AI模型
          • 自定义函数与依赖包整体下发
        • 容器应用
          • subpath子路径使用说明
          • workdir工作目录使用说明
          • Job类型容器应用
          • 容器应用状态说明
          • 原生yaml接入使用说明
          • 端口映射说明
          • 容器应用工作负载类型说明
          • Deployment类型容器应用
          • DaemonSet类型容器应用
          • QPS监控
          • emptyDir卷使用说明
          • 边缘服务调用
        • 进程应用
          • 进程应用概述
          • 可执行二进制程序类型进程应用
          • 可执行脚本类型进程应用
      • 配置管理
        • 证书
        • 函数
        • 镜像仓库凭证
        • 配置项
        • 密文
        • 镜像
        • 进程程序包
    • AI加速卡
      • AI加速卡通用资源调度方法
      • 自定义加速卡算力指标采集
      • 华为昇腾
        • 昇腾310资源监控
      • 英伟达
        • GPU资源调度-显存隔离
        • Jetson资源监控
        • GPU资源调度-显存共享
        • Jetson依赖说明
        • NVIDIA GPU资源监控
      • 寒武纪
        • MLU270资源监控
      • 百度昆仑
        • 昆仑芯片资源监控
      • 比特大陆
        • 挂载比特大陆边缘计算盒子tpu资源
        • BM-SE5资源监控
  • 服务等级协议SLA
    • 服务等级协议SLA(V1.0)
  • 备份
    • 进程模式应用
    • 部署通用CPU模型
    • 部署模型SDK至Atlas200DK
    • 适配列表
    • 连接边缘节点本地baetyl-broker
    • 使用自定义modbus应用采集
    • NVIDIA GPU资源管理
    • FAQ
    • NVIDIA Jetson专用模型部署-进程模式
    • 容器模式应用
    • 连接边缘节点本地baetyl-broker服务
    • DaemonSet类型和job类型服务部署
    • 通用CPU模型部署-容器模式
    • NVIDIA Jetson专用模型部署-容器模式
    • 功能发布记录
    • 在BIE控制台部署从AI中台下载的模型
    • EasyEdge概述
    • Nvidia_Jetson
      • 使用NVIDIA官方镜像运行模型-容器模式
      • 二进制程序运行模型-进程模式
      • 使用edgekit镜像运行模型-容器模式
    • 下载专区
      • 相关资源下载
  • 产品定价
    • 产品定价
  • 文档中心
  • arrow
  • 智能边缘BIE
  • arrow
  • 典型实践
  • arrow
  • 将AI中台模型部署至边缘节点
  • arrow
  • 模型中心1.0
  • arrow
  • 通过AI中台转换模型并下发至边缘
本页目录
  • 前提条件
  • 在AI中台模型仓库导入模型
  • 转换模型
  • 部署到端设备
  • 验证

通过AI中台转换模型并下发至边缘

更新时间:2025-08-21

本文介绍如何在AI中台的模型中心导入原始模型,转换成适配NVIDIA Jetson的模型文件,并下发至设备边缘。

前提条件

  • 有一个可测试的边缘节点设备
  • 边缘节点连接至云端
  • 有一个模型,本实验用的是一个图像分类模型fuild-mobilenceV2.zip。该模型支持识别检测猴子、鸡、狗、猫等上百种生物

在AI中台模型仓库导入模型

打开AI中台控制台,进入「模型中心」,选中「模型列表」,点击上传模型。 将下载好的模型上传,配置如图所示:

image.png

  • 模型类型:这个原始模型的模型类型,此处选择paddle-fluid-v1.5.0

转换模型

导入的原始模型并不适配NVIDIA Jetson类型设备,如果希望模型在NVIDIA Jetson设备上运行,需要进行模型转换操作。

进入「模型中心」,选中「模型转换」,点击「新建转换任务」,在弹出框当中进行配置,如下图所示:

image.png

  • 源模型:选择上一步导入的模型,即animal_model:1.0.0.0
  • 转换后的版本:模型转换以后,将生成新的模型版本,此处设置为1.0.0.1
  • 资源池:选择可用资源池
  • 模型类型:源模型的模型类型,为图像分类
  • 模型框架:源模型的模型框架,为paddle
  • 模型网络:这个源模型的模型网络,为MobileNetV2
  • 目标设备信息:下面两个是填写目标设备信息,即转换后的模型运行环境信息。

    • 操作系统:选择linux,支持ubuntu、centos等常见linux发行版
    • 芯片/硬件:这个是设置这个模型需要转换成在哪种类型设备上运行,此处选择NVIDIA Xavier,也可以使用通用ARM,因为jetson设备也是通用ARM设备。
  • 模型转换参数:来自于源模型压缩包。

    • 模型标签:使用源模型的label_list.txt
    • 预处理文件:使用源模型的processor.json
    • 网络结构文件:使用源模型的model
    • 网络参数文件:使用源模型的params

image.png

部署到端设备

模型转换成功后,我们需要将它部署到NVIDIA Jetson上。进入「模型中心」,选中「模型列表」

选中转换好的模型,转换好的模型类型为easyedge。点击【部署到端设备】.选中在智能边缘创建的边缘节点,端口号输入8701.点击部署后,该模型将自动以应用的形式部署到端设备上。

image.png

进入「智能边缘」控制台,选中对应的节点,可以看到应用已经出现在应用列表。当节点连上云端时,会自动将该应用部署到节点上。

image.png

验证

边缘侧应用部署成功后,调用部署到边缘侧的AI服务来验证这个demo。在浏览器输入:<边缘ip>:8701。 上传检测的图像,可以看到成功识别出猕猴。

image.png

上一篇
部署模型SDK至Atlas200DK
下一篇
通过AI中台直接将模型下发至边缘