常见问题

全功能AI开发平台 BML

  • 版本发布记录
  • 快速开始
    • 用BML实现表格预测
    • 用BML实现序列标注
    • 用BML实现文本实体抽取
    • 用BML实现图片分类
    • 用BML实现实例分割
    • 用BML评价短文本相似度
    • 用BML实现开源大模型的预训练(Post-pretrain)
    • 用BML实现文本分类
    • 用BML实现物体检测
  • 模型仓库
    • 从训练任务导入模型
    • 查看模型
    • 创建模型
    • 模型仓库简介
    • 从本地导入模型
    • 校验模型
    • 服务代码文件示例
      • Sklearn服务代码文件示例
      • XGBoost服务代码文件示例
  • 平台管理
    • 权限管理
    • 在BML平台使用并行文件系统PFS和对象存储BOS
    • 在BML平台使用容器镜像服务CCR
    • 在BML使用外部镜像
    • 项目空间管理
    • 镜像管理
      • 镜像使用
      • 镜像管理简介
      • 常见问题
      • 自定义镜像
    • 资源管理
      • 资源池管理简介
      • 资源池使用简介
  • 预测部署
    • 批量预测(用户资源池)API
    • 文字识别模型部署
      • 文字识别任务API参考文档
      • 文字识别任务公有云部署
    • 通用模型部署
      • 标准接口规范参考
      • Paddle框架API调用文档
      • sklearn框架API调用文档
      • 公有云部署
      • XGBoost框架API调用文档
      • tensorflow框架API调用文档
      • Pytorch框架API调用文档
      • 通用类模型API参考
      • 错误码
    • 语音技术模型部署
      • 声音分类API调用文档
    • 视觉模型部署
      • 智能边缘控制台-多节点版
      • 端云协同服务部署
      • 智能边缘控制台-单节点版
      • 视觉任务模型部署整体说明
      • 软硬一体方案部署
        • 视觉任务Jetson专用SDK集成文档
        • 如何获取视觉任务软硬一体产品
        • 视觉任务EdgeBoard(VMX)专用SDK集成文档
        • 视觉任务EdgeBoard(FZ)专用SDK集成文档
        • 视觉任务专用辨影SDK集成开发文档
      • 私有服务器部署
        • 视觉模型如何部署在私有服务器
        • 私有API
          • 如何发布私有API
          • 图像分类-单图单标签私有API集成文档
          • 图像分类-单图多标签私有API集成文档
          • 物体检测私有API集成文档
        • 服务器端SDK
          • 视觉任务服务器端LinuxSDK集成文档-Python
          • 视觉任务服务器端LinuxSDK集成文档-C++
          • 如何发布服务器端SDK
          • 视觉任务服务器端WindowsSDK集成文档
          • 视觉任务服务器端SDK简介
      • 设备端SDK部署
        • 视觉任务WindowsSDK集成文档
        • 视觉任务iOSSDK集成文档
        • 视觉任务LinuxSDK集成文档-Python
        • 视觉任务LinuxSDK集成文档-C++
        • 视觉任务设备端SDK使用说明
        • 如何发布视觉任务设备端SDK
        • 视觉任务AndroidSDK集成文档
      • 公有云部署
        • 文字识别API参考文档
        • 视觉任务公有云部署
        • 物体检测API参考文档
        • 图像分类-单图单标签API参考文档
        • 实例分割API参考文档
        • 图像分类-单图多标签API参考文档
    • 表格预测模型部署
      • 整体说明
      • 公有云部署
    • 公有云部署管理
      • 配置AB测试版本
      • 批量预测服务
      • 公有云部署
      • 公有云部署简介
      • 配置休眠策略
    • NLP模型部署
      • 自然语言处理任务模型部署整体说明
      • 私有服务器部署
        • 如何部署在私有服务器
        • 私有服务API说明
          • 私有部署说明-短文本相似度
          • 私有化部署接口说明-文本分类
          • 私有部署文档-序列标注
          • 文本实体抽取API调用文档
      • 公有云部署
        • 短文本匹配API调用文档
        • 文本实体抽取私有API调用说明
        • 如何发布自然语言处理任务API
        • 文本分类-多标签API调用文档
        • 文本分类API调用文档
        • 序列标注API调用文档
  • 数据服务
    • 数据服务简介
    • 智能数据API
    • 公有云服务调用数据反馈
    • 智能标注
      • 文本智能标注介绍及原理说明
      • 图像智能标注介绍说明
    • 管理视觉数据
      • 实例分割数据导入与标注
        • 数据标注说明
        • 导入未标注数据
        • 导入已标注数据
      • 物体检测数据导入与标注
        • 物体检测数据标注说明
        • 物体检测导入未标注数据
        • 物体检测导入已标注数据
      • 图像分类数据导入与标注
        • 图像分类导入未标注数据
        • 图像分类导入已标注数据
        • 图像分类数据标注说明
    • 管理文本数据
      • 文本分类数据导入与标注
        • 文本分类数据标注说明
        • 文本分类数据导入与标注
        • 数据去重策略
      • 序列标注数据导入与标注
        • 序列标注标注说明
        • 序列标注数据导入
        • 数据去重策略
      • 文本实体抽取数据标注
        • 文本实体抽取数据标注
        • 文本实体抽取数据导入
        • 数据去重策略
      • 短文本匹配数据导入与标注
        • 短文本匹配数据导入与标注
        • 数据去重策略说明
        • 短文本匹配数据标注
  • 产品简介
    • BML平台升级公告
    • 平台重点升级介绍
    • 产品优势
    • 产品功能
    • 什么是BML
    • 文心大模型
  • 产品定价
    • 服务器部署价格说明
    • 专项适配硬件部署价格说明
    • 公有云部署计费说明
    • 批量预测计费说明
    • 模型训练计费说明
    • 通用小型设备部署价格说明
  • 模型训练
    • Notebook建模
      • 创建并启动Notebook
      • Notebook导入数据集
      • 保存Notebook中的模型
      • Notebook使用参考
      • 常见问题
      • 数据模型可视化功能说明
      • Notebook简介
      • 发布模型
      • 配置模型
      • 使用Notebook开发模型
      • 如何使用Notebook SSH 功能
      • Notebook从训练到部署快速入门
        • Codelab Notebook自定义环境部署最佳实践
        • 基于Notebook的图像分类模板使用指南
        • 基于 Notebook 的 NLP 通用模板使用指南
        • Notebook 模板使用指南概述
        • 基于 Notebook 的通用模板使用指南
        • 基于 Notebook 的物体检测模板使用指南
    • 自定义作业建模
      • 自定义作业简介
      • 训练作业API
      • 训练作业
        • 使用训练作业训练模型
        • 创建训练作业
        • 发布模型
        • 训练作业代码示例
          • TensorFlow 1.13.2
          • AIAK- Training Pytorch版
          • TensorFlow 2.3.0
          • Blackhole 1.0.0
          • Pytorch 1.7.1
          • Sklearn 0.23.2
          • XGBoost 1.3.1
          • PaddlePaddle 2.0.0rc
      • 自动搜索作业
        • 创建自动搜索作业
        • yaml文件编写规范
        • 自动搜索作业简介
        • 自动搜索作业代码编写规范
        • 自动搜索作业代码示例
          • XGBoost 1.3.1代码规范
          • TensorFlow 1.13.2代码规范
          • Sklearn 0.23.2代码规范
          • Pytorch 1.7.1代码规范
          • Tensorflow2.3.0代码规范
          • PaddlePaddle 2.1.1代码规范
    • 可视化建模
      • 快速入门
      • 概述
      • 组件菜单
        • 001-基本操作
        • 003-查看模型特征溯源
        • 007-组件状态
        • 008-组件资源配置
        • 006-组件列选择
        • 002-查看模型可解释性
        • 004-查看特征重要性
      • 组件说明
        • 015-图算法
        • 004-特征工程组件
        • 003-数据处理组件
        • 012-预测组件
        • 008-聚类算法
        • 009-Python算法组件
        • 002-数据集组件
        • 014-自然语言处理组件
        • 010-NLP算法
        • 016-统计分析组件
        • 006-回归算法
        • 007-异常检测算法
        • 013-模型评估组件
        • 005-分类算法
        • 018-时间序列组件
      • 画布操作说明
        • 005-AutoML(自动调参)
        • 002-开始训练
        • 001-概述
    • 预置模型调参建模
      • 预置模型调参简介
      • 神经网络训练搜索
      • 开发视觉模型
        • 视觉任务简介
        • 查看训练结果
        • 创建视觉任务
        • 配置视觉任务
        • 开发参考
          • 视觉预训练模型
          • 超参数配置参考
          • 评估报告参考
          • 自动超参搜索配置参考
          • 数据增强算子参考
          • 训练时长设置参考
          • 网络选型参考
      • 开发表格预测模型
        • 创建表格预测任务
        • 配置专家模式表格数据预测任务
        • 查看训练结果
        • 配置AUTOML模式表格数据预测任务
        • 表格预测任务简介
      • 开发文字识别模型
        • 文字识别任务简介
        • 文字识别任务操作流程
      • 开发自然语言处理模型
        • 查看训练结果
        • 自然语言处理任务简介
        • 配置NLP任务
        • 创建NLP任务
        • 代码模板升级及迁移说明
所有文档
menu
没有找到结果,请重新输入

全功能AI开发平台 BML

  • 版本发布记录
  • 快速开始
    • 用BML实现表格预测
    • 用BML实现序列标注
    • 用BML实现文本实体抽取
    • 用BML实现图片分类
    • 用BML实现实例分割
    • 用BML评价短文本相似度
    • 用BML实现开源大模型的预训练(Post-pretrain)
    • 用BML实现文本分类
    • 用BML实现物体检测
  • 模型仓库
    • 从训练任务导入模型
    • 查看模型
    • 创建模型
    • 模型仓库简介
    • 从本地导入模型
    • 校验模型
    • 服务代码文件示例
      • Sklearn服务代码文件示例
      • XGBoost服务代码文件示例
  • 平台管理
    • 权限管理
    • 在BML平台使用并行文件系统PFS和对象存储BOS
    • 在BML平台使用容器镜像服务CCR
    • 在BML使用外部镜像
    • 项目空间管理
    • 镜像管理
      • 镜像使用
      • 镜像管理简介
      • 常见问题
      • 自定义镜像
    • 资源管理
      • 资源池管理简介
      • 资源池使用简介
  • 预测部署
    • 批量预测(用户资源池)API
    • 文字识别模型部署
      • 文字识别任务API参考文档
      • 文字识别任务公有云部署
    • 通用模型部署
      • 标准接口规范参考
      • Paddle框架API调用文档
      • sklearn框架API调用文档
      • 公有云部署
      • XGBoost框架API调用文档
      • tensorflow框架API调用文档
      • Pytorch框架API调用文档
      • 通用类模型API参考
      • 错误码
    • 语音技术模型部署
      • 声音分类API调用文档
    • 视觉模型部署
      • 智能边缘控制台-多节点版
      • 端云协同服务部署
      • 智能边缘控制台-单节点版
      • 视觉任务模型部署整体说明
      • 软硬一体方案部署
        • 视觉任务Jetson专用SDK集成文档
        • 如何获取视觉任务软硬一体产品
        • 视觉任务EdgeBoard(VMX)专用SDK集成文档
        • 视觉任务EdgeBoard(FZ)专用SDK集成文档
        • 视觉任务专用辨影SDK集成开发文档
      • 私有服务器部署
        • 视觉模型如何部署在私有服务器
        • 私有API
          • 如何发布私有API
          • 图像分类-单图单标签私有API集成文档
          • 图像分类-单图多标签私有API集成文档
          • 物体检测私有API集成文档
        • 服务器端SDK
          • 视觉任务服务器端LinuxSDK集成文档-Python
          • 视觉任务服务器端LinuxSDK集成文档-C++
          • 如何发布服务器端SDK
          • 视觉任务服务器端WindowsSDK集成文档
          • 视觉任务服务器端SDK简介
      • 设备端SDK部署
        • 视觉任务WindowsSDK集成文档
        • 视觉任务iOSSDK集成文档
        • 视觉任务LinuxSDK集成文档-Python
        • 视觉任务LinuxSDK集成文档-C++
        • 视觉任务设备端SDK使用说明
        • 如何发布视觉任务设备端SDK
        • 视觉任务AndroidSDK集成文档
      • 公有云部署
        • 文字识别API参考文档
        • 视觉任务公有云部署
        • 物体检测API参考文档
        • 图像分类-单图单标签API参考文档
        • 实例分割API参考文档
        • 图像分类-单图多标签API参考文档
    • 表格预测模型部署
      • 整体说明
      • 公有云部署
    • 公有云部署管理
      • 配置AB测试版本
      • 批量预测服务
      • 公有云部署
      • 公有云部署简介
      • 配置休眠策略
    • NLP模型部署
      • 自然语言处理任务模型部署整体说明
      • 私有服务器部署
        • 如何部署在私有服务器
        • 私有服务API说明
          • 私有部署说明-短文本相似度
          • 私有化部署接口说明-文本分类
          • 私有部署文档-序列标注
          • 文本实体抽取API调用文档
      • 公有云部署
        • 短文本匹配API调用文档
        • 文本实体抽取私有API调用说明
        • 如何发布自然语言处理任务API
        • 文本分类-多标签API调用文档
        • 文本分类API调用文档
        • 序列标注API调用文档
  • 数据服务
    • 数据服务简介
    • 智能数据API
    • 公有云服务调用数据反馈
    • 智能标注
      • 文本智能标注介绍及原理说明
      • 图像智能标注介绍说明
    • 管理视觉数据
      • 实例分割数据导入与标注
        • 数据标注说明
        • 导入未标注数据
        • 导入已标注数据
      • 物体检测数据导入与标注
        • 物体检测数据标注说明
        • 物体检测导入未标注数据
        • 物体检测导入已标注数据
      • 图像分类数据导入与标注
        • 图像分类导入未标注数据
        • 图像分类导入已标注数据
        • 图像分类数据标注说明
    • 管理文本数据
      • 文本分类数据导入与标注
        • 文本分类数据标注说明
        • 文本分类数据导入与标注
        • 数据去重策略
      • 序列标注数据导入与标注
        • 序列标注标注说明
        • 序列标注数据导入
        • 数据去重策略
      • 文本实体抽取数据标注
        • 文本实体抽取数据标注
        • 文本实体抽取数据导入
        • 数据去重策略
      • 短文本匹配数据导入与标注
        • 短文本匹配数据导入与标注
        • 数据去重策略说明
        • 短文本匹配数据标注
  • 产品简介
    • BML平台升级公告
    • 平台重点升级介绍
    • 产品优势
    • 产品功能
    • 什么是BML
    • 文心大模型
  • 产品定价
    • 服务器部署价格说明
    • 专项适配硬件部署价格说明
    • 公有云部署计费说明
    • 批量预测计费说明
    • 模型训练计费说明
    • 通用小型设备部署价格说明
  • 模型训练
    • Notebook建模
      • 创建并启动Notebook
      • Notebook导入数据集
      • 保存Notebook中的模型
      • Notebook使用参考
      • 常见问题
      • 数据模型可视化功能说明
      • Notebook简介
      • 发布模型
      • 配置模型
      • 使用Notebook开发模型
      • 如何使用Notebook SSH 功能
      • Notebook从训练到部署快速入门
        • Codelab Notebook自定义环境部署最佳实践
        • 基于Notebook的图像分类模板使用指南
        • 基于 Notebook 的 NLP 通用模板使用指南
        • Notebook 模板使用指南概述
        • 基于 Notebook 的通用模板使用指南
        • 基于 Notebook 的物体检测模板使用指南
    • 自定义作业建模
      • 自定义作业简介
      • 训练作业API
      • 训练作业
        • 使用训练作业训练模型
        • 创建训练作业
        • 发布模型
        • 训练作业代码示例
          • TensorFlow 1.13.2
          • AIAK- Training Pytorch版
          • TensorFlow 2.3.0
          • Blackhole 1.0.0
          • Pytorch 1.7.1
          • Sklearn 0.23.2
          • XGBoost 1.3.1
          • PaddlePaddle 2.0.0rc
      • 自动搜索作业
        • 创建自动搜索作业
        • yaml文件编写规范
        • 自动搜索作业简介
        • 自动搜索作业代码编写规范
        • 自动搜索作业代码示例
          • XGBoost 1.3.1代码规范
          • TensorFlow 1.13.2代码规范
          • Sklearn 0.23.2代码规范
          • Pytorch 1.7.1代码规范
          • Tensorflow2.3.0代码规范
          • PaddlePaddle 2.1.1代码规范
    • 可视化建模
      • 快速入门
      • 概述
      • 组件菜单
        • 001-基本操作
        • 003-查看模型特征溯源
        • 007-组件状态
        • 008-组件资源配置
        • 006-组件列选择
        • 002-查看模型可解释性
        • 004-查看特征重要性
      • 组件说明
        • 015-图算法
        • 004-特征工程组件
        • 003-数据处理组件
        • 012-预测组件
        • 008-聚类算法
        • 009-Python算法组件
        • 002-数据集组件
        • 014-自然语言处理组件
        • 010-NLP算法
        • 016-统计分析组件
        • 006-回归算法
        • 007-异常检测算法
        • 013-模型评估组件
        • 005-分类算法
        • 018-时间序列组件
      • 画布操作说明
        • 005-AutoML(自动调参)
        • 002-开始训练
        • 001-概述
    • 预置模型调参建模
      • 预置模型调参简介
      • 神经网络训练搜索
      • 开发视觉模型
        • 视觉任务简介
        • 查看训练结果
        • 创建视觉任务
        • 配置视觉任务
        • 开发参考
          • 视觉预训练模型
          • 超参数配置参考
          • 评估报告参考
          • 自动超参搜索配置参考
          • 数据增强算子参考
          • 训练时长设置参考
          • 网络选型参考
      • 开发表格预测模型
        • 创建表格预测任务
        • 配置专家模式表格数据预测任务
        • 查看训练结果
        • 配置AUTOML模式表格数据预测任务
        • 表格预测任务简介
      • 开发文字识别模型
        • 文字识别任务简介
        • 文字识别任务操作流程
      • 开发自然语言处理模型
        • 查看训练结果
        • 自然语言处理任务简介
        • 配置NLP任务
        • 创建NLP任务
        • 代码模板升级及迁移说明
  • 文档中心
  • arrow
  • 全功能AI开发平台BML
  • arrow
  • 模型训练
  • arrow
  • Notebook建模
  • arrow
  • 常见问题
本页目录
  • Q1.什么是Notebook?
  • Q2.支持哪些浏览器?
  • Q3.Jupyter 和 Notebook 有什么区别?如何使用Jupyter?
  • Q4.我的代码在哪里执行?如果关闭浏览器窗口,我的执行状态会怎样?
  • Q5.Python有哪些基础类库,我应该如何学习?
  • Q6. 我在Notebook中pip install的Python package在下次运行时为什么不见了?
  • Q7. 为什么我的项目打开后, 文件不见了?
  • Q8. BML中Notebook除了PaddlePaddle外,是否支持TensorFlow等其他框架?
  • Q9. 为什么我使用PaddlePaddle显存占用这么大?
  • Q10. Notebook中如何同步git内容?
  • Q11. 为什么在Notebook中同步GitHub会比较慢?
  • Q12. 为什么不能运行turtle或tkinter?
  • Q13. 是否支持导入ipynb文件?
  • Q14. 如何通过apt-get或apt-install安装库?
  • Q15. 如何移动Notebook中的文件?
  • Q16. 平台中的Notebook模式使用的v100资源是几张卡呢?
  • Q17. Notebook项目中能运行的代码, 在脚本任务中需要改吗?
  • Q18. 我想把本地项目文件上传至Notebook项目中, 但文件数量比较多, 怎么上传?
  • Q19. 我上传文件时, 系统告诉我上传失败, 怎么办?
  • Q20. 我在卸载或者安装包时,输出进程提示输入(y/n)没有输入框。不知从哪输入y或者n
  • Q21. 如何在Notebook中进行调试?

常见问题

更新时间:2025-08-21

Q1.什么是Notebook?

Notebook 是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,适用于进行机器学习深度学习的培训和开发.

Q2.支持哪些浏览器?

Notebook 在 Chrome/ Firefox/ Safari的各个桌面版本上进行了最全面的测试,不支持 IE以及IE内核浏览器。

Q3.Jupyter 和 Notebook 有什么区别?如何使用Jupyter?

Jupyter Notebook是一个开放源代码项目,定义的基于web的交互式编程方法已经逐渐成为全球数据科学/机器学习/深度学习领域的前端标准. BML中Notebook 是在 Jupyter Notebook 基础之上开发的。通过BML中的Notebook,您可以使用 Jupyter Notebook,完全不需要在您自己的计算机上下载、安装或运行任何内容,只要有浏览器就可以使用. 通过查阅Jupyter Notebook使用手册,您可以充分了解Juypter指令使用方法.

Q4.我的代码在哪里执行?如果关闭浏览器窗口,我的执行状态会怎样?

代码会在专供您使用的docker容器中执行。docker容器闲置一段时间后会被回收,并且系统为docker容器强制设置了最长有效期.关闭浏览器窗口期间的代码执行的标准输出不会在屏幕窗口中展示,因此,建议您如果需要在关闭浏览器窗口的情况下继续运行代码,可以把程序标准输出/标准错误输出存储到文件(非/home/work/data目录下文件)中.

Q5.Python有哪些基础类库,我应该如何学习?

您可以参考Python3.5手册和Python2.7手册. 因为Python2.7官方已不再支持,推荐您使用Python3.5及以上版本.

Q6. 我在Notebook中pip install的Python package在下次运行时为什么不见了?

如果需要进行持久化安装, 需要使用持久化路径, 如下方代码示例:

Plain Text
1!mkdir /home/work/external-libraries
2!pip install beautifulsoup4 -t /home/work/external-libraries

同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可:

Plain Text
1import sys
2sys.path.append('/home/work/external-libraries')

除上述操作外,在保存模型时,需要将'/home/work/external-libraries'及其包含的文件作为代码库进行保存,并在下次启动Notebook时使用该代码库,从而在启动Notebook后才可以使用已安装的Python库。

Q7. 为什么我的项目打开后, 文件不见了?

Data目录为非持久化目录, 在Data下进行的文件操作, 重启之后会被自动恢复.

Q8. BML中Notebook除了PaddlePaddle外,是否支持TensorFlow等其他框架?

框架的支持需要大量的硬件适配工作, 而我们暂无人力开展此项工作. 用户自行安装的框架往往不能在GPU环境下正常运行, 从而对我平台稳定性产生质疑. 因此最终决定暂停支持. 平台对PaddlePaddle进行了充分的适配工作,您可以尝试使用PaddlePaddle. 附带一份TensorFlow和PaddlePaddle的API映射表: https://aistudio.baidu.com/aistudio/projectdetail/80548

Q9. 为什么我使用PaddlePaddle显存占用这么大?

PaddlePaddle在分配requested_size大小的显存时,先定义一个显存池的大小,记为chunk_size,chunk_size由环境变量 FLAGS_fraction_of_gpu_memory_to_use 确定,表征chunk_size在全部显存的占比,默认值为0.92,即框架预先分配显卡92%的显存 注:若GPU卡上有其他任务占用显存,可以适当调整chunk的占比,保证框架能预分配到合适的chunk,比如可以分配40%的显存可以这样设置:

exportFLAGS_fraction_of_gpu_memory_to_use=0.4 # 预先40%的GPU显存

提醒:chunk占比应该尽可能大,只有在想测量网络的实际显存占用量时,可以设置该占比为0,观察nvidia-smi显示的显存占用情况。

Q10. Notebook中如何同步git内容?

您可以在code cell中执行如下命令来同步git !git clone https://yourgitaddress.git

请注意, 如果git网址为http (而不是https), 有可能被要求再次确认, 而Notebook中缺乏该类交互能力.

如有必要, 请使用Terminal功能.

Q11. 为什么在Notebook中同步GitHub会比较慢?

经测试, 主要是中国访问海外资源的总带宽有限.

可以尝试使用国内代码托管服务来替代.

或通过其他方式将GitHub资源下载后, 再上传至AI Studio.

Q12. 为什么不能运行turtle或tkinter?

turtle/tkinter运行时会创建一个GUI, 但是BML中Notebook是一个运行在云端的网页服务. 它无法在你的机器上打开一个窗口.

如果确实有必要, 请自己修改turtle或tkinter的代码, 对其GUI行为进行限制, 或使得它们直接支持Notebook.

Q13. 是否支持导入ipynb文件?

为了系统安全及稳定性,Notebook对ipynb文件进行了隐藏, 同时一个项目仅支持一个活动的ipynb文件, 作为整个项目的启动文件.

用户可以上传并替换默认的ipynb文件。

Q14. 如何通过apt-get或apt-install安装库?

限于安全策略, 我们暂不支持通过这种方式进行安装. 也不建议编译模式(make)进行安装. 如果的确有需求, 请通过mailto: aistudio@baidu.com 申请.

Q15. 如何移动Notebook中的文件?

可使用终端命令来进行文件位置操作. 例如:

Plain Text
1#!/bin/bash
2direc="%%1" #$(pwd)
3for dir2mv in $direc/* ; do
4if [ -d $dir2mv ]; then
5  mv $dir2mv "%%2"
6fi
7done

Q16. 平台中的Notebook模式使用的v100资源是几张卡呢?

目前是1张

Q17. Notebook项目中能运行的代码, 在脚本任务中需要改吗?

需要进行修改. 在创建脚本任务时会提供一些范例, 请按范例说明进行修改.

Q18. 我想把本地项目文件上传至Notebook项目中, 但文件数量比较多, 怎么上传?

a. 请将项目文件打成zip包后, 在Notebook环境中上传.

如果项目文件较大(>150mb), 请使用数据集功能上传, 然后挂载到项目中.

b. 最后在项目中通过unzip命令进行解压缩(请注意需要解压到work目录下)

c. 如执意需要.rar包, 由于该格式为RAR共享软件独有, 请自行百度解压命令及用法.

Q19. 我上传文件时, 系统告诉我上传失败, 怎么办?

已知上传失败有3种情况:

  1. 您本地的系统时间和互联网标准时间差异过大, 此时您需要调整本地电脑时钟, 使之和互联网标准时间基本一致, 然后重新上传.
  2. 您使用了VPN软件, 这类软件可能会导致上传失败. 此时您需要关闭VPN软件, 然后重新上传.
  3. Notebook内部服务异常. 此时您可发送问题页面url及截图, 请提交工单联系我们.

Q20. 我在卸载或者安装包时,输出进程提示输入(y/n)没有输入框。不知从哪输入y或者n

部分情况, 在Notebook的输出区有对应输入位置. 如确定没有, 则请使用Notebook中的"终端"功能.

Q21. 如何在Notebook中进行调试?

Notebook环境自启动后, 其实就已经在调试状态了. 点击每个Cell前面的运行按钮,可以视为Step-Over的执行状态. 如果需要添加断点等功能, 请使用Python自带的调试器: PDB.

上一篇
Notebook使用参考
下一篇
数据模型可视化功能说明