创建自动搜索作业

全功能AI开发平台 BML

  • 版本发布记录
  • 快速开始
    • 用BML实现表格预测
    • 用BML实现序列标注
    • 用BML实现文本实体抽取
    • 用BML实现图片分类
    • 用BML实现实例分割
    • 用BML评价短文本相似度
    • 用BML实现开源大模型的预训练(Post-pretrain)
    • 用BML实现文本分类
    • 用BML实现物体检测
  • 模型仓库
    • 从训练任务导入模型
    • 查看模型
    • 创建模型
    • 模型仓库简介
    • 从本地导入模型
    • 校验模型
    • 服务代码文件示例
      • Sklearn服务代码文件示例
      • XGBoost服务代码文件示例
  • 平台管理
    • 权限管理
    • 在BML平台使用并行文件系统PFS和对象存储BOS
    • 在BML平台使用容器镜像服务CCR
    • 在BML使用外部镜像
    • 项目空间管理
    • 镜像管理
      • 镜像使用
      • 镜像管理简介
      • 常见问题
      • 自定义镜像
    • 资源管理
      • 资源池管理简介
      • 资源池使用简介
  • 预测部署
    • 批量预测(用户资源池)API
    • 文字识别模型部署
      • 文字识别任务API参考文档
      • 文字识别任务公有云部署
    • 通用模型部署
      • 标准接口规范参考
      • Paddle框架API调用文档
      • sklearn框架API调用文档
      • 公有云部署
      • XGBoost框架API调用文档
      • tensorflow框架API调用文档
      • Pytorch框架API调用文档
      • 通用类模型API参考
      • 错误码
    • 语音技术模型部署
      • 声音分类API调用文档
    • 视觉模型部署
      • 智能边缘控制台-多节点版
      • 端云协同服务部署
      • 智能边缘控制台-单节点版
      • 视觉任务模型部署整体说明
      • 软硬一体方案部署
        • 视觉任务Jetson专用SDK集成文档
        • 如何获取视觉任务软硬一体产品
        • 视觉任务EdgeBoard(VMX)专用SDK集成文档
        • 视觉任务EdgeBoard(FZ)专用SDK集成文档
        • 视觉任务专用辨影SDK集成开发文档
      • 私有服务器部署
        • 视觉模型如何部署在私有服务器
        • 私有API
          • 如何发布私有API
          • 图像分类-单图单标签私有API集成文档
          • 图像分类-单图多标签私有API集成文档
          • 物体检测私有API集成文档
        • 服务器端SDK
          • 视觉任务服务器端LinuxSDK集成文档-Python
          • 视觉任务服务器端LinuxSDK集成文档-C++
          • 如何发布服务器端SDK
          • 视觉任务服务器端WindowsSDK集成文档
          • 视觉任务服务器端SDK简介
      • 设备端SDK部署
        • 视觉任务WindowsSDK集成文档
        • 视觉任务iOSSDK集成文档
        • 视觉任务LinuxSDK集成文档-Python
        • 视觉任务LinuxSDK集成文档-C++
        • 视觉任务设备端SDK使用说明
        • 如何发布视觉任务设备端SDK
        • 视觉任务AndroidSDK集成文档
      • 公有云部署
        • 文字识别API参考文档
        • 视觉任务公有云部署
        • 物体检测API参考文档
        • 图像分类-单图单标签API参考文档
        • 实例分割API参考文档
        • 图像分类-单图多标签API参考文档
    • 表格预测模型部署
      • 整体说明
      • 公有云部署
    • 公有云部署管理
      • 配置AB测试版本
      • 批量预测服务
      • 公有云部署
      • 公有云部署简介
      • 配置休眠策略
    • NLP模型部署
      • 自然语言处理任务模型部署整体说明
      • 私有服务器部署
        • 如何部署在私有服务器
        • 私有服务API说明
          • 私有部署说明-短文本相似度
          • 私有化部署接口说明-文本分类
          • 私有部署文档-序列标注
          • 文本实体抽取API调用文档
      • 公有云部署
        • 短文本匹配API调用文档
        • 文本实体抽取私有API调用说明
        • 如何发布自然语言处理任务API
        • 文本分类-多标签API调用文档
        • 文本分类API调用文档
        • 序列标注API调用文档
  • 数据服务
    • 数据服务简介
    • 智能数据API
    • 公有云服务调用数据反馈
    • 智能标注
      • 文本智能标注介绍及原理说明
      • 图像智能标注介绍说明
    • 管理视觉数据
      • 实例分割数据导入与标注
        • 数据标注说明
        • 导入未标注数据
        • 导入已标注数据
      • 物体检测数据导入与标注
        • 物体检测数据标注说明
        • 物体检测导入未标注数据
        • 物体检测导入已标注数据
      • 图像分类数据导入与标注
        • 图像分类导入未标注数据
        • 图像分类导入已标注数据
        • 图像分类数据标注说明
    • 管理文本数据
      • 文本分类数据导入与标注
        • 文本分类数据标注说明
        • 文本分类数据导入与标注
        • 数据去重策略
      • 序列标注数据导入与标注
        • 序列标注标注说明
        • 序列标注数据导入
        • 数据去重策略
      • 文本实体抽取数据标注
        • 文本实体抽取数据标注
        • 文本实体抽取数据导入
        • 数据去重策略
      • 短文本匹配数据导入与标注
        • 短文本匹配数据导入与标注
        • 数据去重策略说明
        • 短文本匹配数据标注
  • 产品简介
    • BML平台升级公告
    • 平台重点升级介绍
    • 产品优势
    • 产品功能
    • 什么是BML
    • 文心大模型
  • 产品定价
    • 服务器部署价格说明
    • 专项适配硬件部署价格说明
    • 公有云部署计费说明
    • 批量预测计费说明
    • 模型训练计费说明
    • 通用小型设备部署价格说明
  • 模型训练
    • Notebook建模
      • 创建并启动Notebook
      • Notebook导入数据集
      • 保存Notebook中的模型
      • Notebook使用参考
      • 常见问题
      • 数据模型可视化功能说明
      • Notebook简介
      • 发布模型
      • 配置模型
      • 使用Notebook开发模型
      • 如何使用Notebook SSH 功能
      • Notebook从训练到部署快速入门
        • Codelab Notebook自定义环境部署最佳实践
        • 基于Notebook的图像分类模板使用指南
        • 基于 Notebook 的 NLP 通用模板使用指南
        • Notebook 模板使用指南概述
        • 基于 Notebook 的通用模板使用指南
        • 基于 Notebook 的物体检测模板使用指南
    • 自定义作业建模
      • 自定义作业简介
      • 训练作业API
      • 训练作业
        • 使用训练作业训练模型
        • 创建训练作业
        • 发布模型
        • 训练作业代码示例
          • TensorFlow 1.13.2
          • AIAK- Training Pytorch版
          • TensorFlow 2.3.0
          • Blackhole 1.0.0
          • Pytorch 1.7.1
          • Sklearn 0.23.2
          • XGBoost 1.3.1
          • PaddlePaddle 2.0.0rc
      • 自动搜索作业
        • 创建自动搜索作业
        • yaml文件编写规范
        • 自动搜索作业简介
        • 自动搜索作业代码编写规范
        • 自动搜索作业代码示例
          • XGBoost 1.3.1代码规范
          • TensorFlow 1.13.2代码规范
          • Sklearn 0.23.2代码规范
          • Pytorch 1.7.1代码规范
          • Tensorflow2.3.0代码规范
          • PaddlePaddle 2.1.1代码规范
    • 可视化建模
      • 快速入门
      • 概述
      • 组件菜单
        • 001-基本操作
        • 003-查看模型特征溯源
        • 007-组件状态
        • 008-组件资源配置
        • 006-组件列选择
        • 002-查看模型可解释性
        • 004-查看特征重要性
      • 组件说明
        • 015-图算法
        • 004-特征工程组件
        • 003-数据处理组件
        • 012-预测组件
        • 008-聚类算法
        • 009-Python算法组件
        • 002-数据集组件
        • 014-自然语言处理组件
        • 010-NLP算法
        • 016-统计分析组件
        • 006-回归算法
        • 007-异常检测算法
        • 013-模型评估组件
        • 005-分类算法
        • 018-时间序列组件
      • 画布操作说明
        • 005-AutoML(自动调参)
        • 002-开始训练
        • 001-概述
    • 预置模型调参建模
      • 预置模型调参简介
      • 神经网络训练搜索
      • 开发视觉模型
        • 视觉任务简介
        • 查看训练结果
        • 创建视觉任务
        • 配置视觉任务
        • 开发参考
          • 视觉预训练模型
          • 超参数配置参考
          • 评估报告参考
          • 自动超参搜索配置参考
          • 数据增强算子参考
          • 训练时长设置参考
          • 网络选型参考
      • 开发表格预测模型
        • 创建表格预测任务
        • 配置专家模式表格数据预测任务
        • 查看训练结果
        • 配置AUTOML模式表格数据预测任务
        • 表格预测任务简介
      • 开发文字识别模型
        • 文字识别任务简介
        • 文字识别任务操作流程
      • 开发自然语言处理模型
        • 查看训练结果
        • 自然语言处理任务简介
        • 配置NLP任务
        • 创建NLP任务
        • 代码模板升级及迁移说明
所有文档
menu
没有找到结果,请重新输入

全功能AI开发平台 BML

  • 版本发布记录
  • 快速开始
    • 用BML实现表格预测
    • 用BML实现序列标注
    • 用BML实现文本实体抽取
    • 用BML实现图片分类
    • 用BML实现实例分割
    • 用BML评价短文本相似度
    • 用BML实现开源大模型的预训练(Post-pretrain)
    • 用BML实现文本分类
    • 用BML实现物体检测
  • 模型仓库
    • 从训练任务导入模型
    • 查看模型
    • 创建模型
    • 模型仓库简介
    • 从本地导入模型
    • 校验模型
    • 服务代码文件示例
      • Sklearn服务代码文件示例
      • XGBoost服务代码文件示例
  • 平台管理
    • 权限管理
    • 在BML平台使用并行文件系统PFS和对象存储BOS
    • 在BML平台使用容器镜像服务CCR
    • 在BML使用外部镜像
    • 项目空间管理
    • 镜像管理
      • 镜像使用
      • 镜像管理简介
      • 常见问题
      • 自定义镜像
    • 资源管理
      • 资源池管理简介
      • 资源池使用简介
  • 预测部署
    • 批量预测(用户资源池)API
    • 文字识别模型部署
      • 文字识别任务API参考文档
      • 文字识别任务公有云部署
    • 通用模型部署
      • 标准接口规范参考
      • Paddle框架API调用文档
      • sklearn框架API调用文档
      • 公有云部署
      • XGBoost框架API调用文档
      • tensorflow框架API调用文档
      • Pytorch框架API调用文档
      • 通用类模型API参考
      • 错误码
    • 语音技术模型部署
      • 声音分类API调用文档
    • 视觉模型部署
      • 智能边缘控制台-多节点版
      • 端云协同服务部署
      • 智能边缘控制台-单节点版
      • 视觉任务模型部署整体说明
      • 软硬一体方案部署
        • 视觉任务Jetson专用SDK集成文档
        • 如何获取视觉任务软硬一体产品
        • 视觉任务EdgeBoard(VMX)专用SDK集成文档
        • 视觉任务EdgeBoard(FZ)专用SDK集成文档
        • 视觉任务专用辨影SDK集成开发文档
      • 私有服务器部署
        • 视觉模型如何部署在私有服务器
        • 私有API
          • 如何发布私有API
          • 图像分类-单图单标签私有API集成文档
          • 图像分类-单图多标签私有API集成文档
          • 物体检测私有API集成文档
        • 服务器端SDK
          • 视觉任务服务器端LinuxSDK集成文档-Python
          • 视觉任务服务器端LinuxSDK集成文档-C++
          • 如何发布服务器端SDK
          • 视觉任务服务器端WindowsSDK集成文档
          • 视觉任务服务器端SDK简介
      • 设备端SDK部署
        • 视觉任务WindowsSDK集成文档
        • 视觉任务iOSSDK集成文档
        • 视觉任务LinuxSDK集成文档-Python
        • 视觉任务LinuxSDK集成文档-C++
        • 视觉任务设备端SDK使用说明
        • 如何发布视觉任务设备端SDK
        • 视觉任务AndroidSDK集成文档
      • 公有云部署
        • 文字识别API参考文档
        • 视觉任务公有云部署
        • 物体检测API参考文档
        • 图像分类-单图单标签API参考文档
        • 实例分割API参考文档
        • 图像分类-单图多标签API参考文档
    • 表格预测模型部署
      • 整体说明
      • 公有云部署
    • 公有云部署管理
      • 配置AB测试版本
      • 批量预测服务
      • 公有云部署
      • 公有云部署简介
      • 配置休眠策略
    • NLP模型部署
      • 自然语言处理任务模型部署整体说明
      • 私有服务器部署
        • 如何部署在私有服务器
        • 私有服务API说明
          • 私有部署说明-短文本相似度
          • 私有化部署接口说明-文本分类
          • 私有部署文档-序列标注
          • 文本实体抽取API调用文档
      • 公有云部署
        • 短文本匹配API调用文档
        • 文本实体抽取私有API调用说明
        • 如何发布自然语言处理任务API
        • 文本分类-多标签API调用文档
        • 文本分类API调用文档
        • 序列标注API调用文档
  • 数据服务
    • 数据服务简介
    • 智能数据API
    • 公有云服务调用数据反馈
    • 智能标注
      • 文本智能标注介绍及原理说明
      • 图像智能标注介绍说明
    • 管理视觉数据
      • 实例分割数据导入与标注
        • 数据标注说明
        • 导入未标注数据
        • 导入已标注数据
      • 物体检测数据导入与标注
        • 物体检测数据标注说明
        • 物体检测导入未标注数据
        • 物体检测导入已标注数据
      • 图像分类数据导入与标注
        • 图像分类导入未标注数据
        • 图像分类导入已标注数据
        • 图像分类数据标注说明
    • 管理文本数据
      • 文本分类数据导入与标注
        • 文本分类数据标注说明
        • 文本分类数据导入与标注
        • 数据去重策略
      • 序列标注数据导入与标注
        • 序列标注标注说明
        • 序列标注数据导入
        • 数据去重策略
      • 文本实体抽取数据标注
        • 文本实体抽取数据标注
        • 文本实体抽取数据导入
        • 数据去重策略
      • 短文本匹配数据导入与标注
        • 短文本匹配数据导入与标注
        • 数据去重策略说明
        • 短文本匹配数据标注
  • 产品简介
    • BML平台升级公告
    • 平台重点升级介绍
    • 产品优势
    • 产品功能
    • 什么是BML
    • 文心大模型
  • 产品定价
    • 服务器部署价格说明
    • 专项适配硬件部署价格说明
    • 公有云部署计费说明
    • 批量预测计费说明
    • 模型训练计费说明
    • 通用小型设备部署价格说明
  • 模型训练
    • Notebook建模
      • 创建并启动Notebook
      • Notebook导入数据集
      • 保存Notebook中的模型
      • Notebook使用参考
      • 常见问题
      • 数据模型可视化功能说明
      • Notebook简介
      • 发布模型
      • 配置模型
      • 使用Notebook开发模型
      • 如何使用Notebook SSH 功能
      • Notebook从训练到部署快速入门
        • Codelab Notebook自定义环境部署最佳实践
        • 基于Notebook的图像分类模板使用指南
        • 基于 Notebook 的 NLP 通用模板使用指南
        • Notebook 模板使用指南概述
        • 基于 Notebook 的通用模板使用指南
        • 基于 Notebook 的物体检测模板使用指南
    • 自定义作业建模
      • 自定义作业简介
      • 训练作业API
      • 训练作业
        • 使用训练作业训练模型
        • 创建训练作业
        • 发布模型
        • 训练作业代码示例
          • TensorFlow 1.13.2
          • AIAK- Training Pytorch版
          • TensorFlow 2.3.0
          • Blackhole 1.0.0
          • Pytorch 1.7.1
          • Sklearn 0.23.2
          • XGBoost 1.3.1
          • PaddlePaddle 2.0.0rc
      • 自动搜索作业
        • 创建自动搜索作业
        • yaml文件编写规范
        • 自动搜索作业简介
        • 自动搜索作业代码编写规范
        • 自动搜索作业代码示例
          • XGBoost 1.3.1代码规范
          • TensorFlow 1.13.2代码规范
          • Sklearn 0.23.2代码规范
          • Pytorch 1.7.1代码规范
          • Tensorflow2.3.0代码规范
          • PaddlePaddle 2.1.1代码规范
    • 可视化建模
      • 快速入门
      • 概述
      • 组件菜单
        • 001-基本操作
        • 003-查看模型特征溯源
        • 007-组件状态
        • 008-组件资源配置
        • 006-组件列选择
        • 002-查看模型可解释性
        • 004-查看特征重要性
      • 组件说明
        • 015-图算法
        • 004-特征工程组件
        • 003-数据处理组件
        • 012-预测组件
        • 008-聚类算法
        • 009-Python算法组件
        • 002-数据集组件
        • 014-自然语言处理组件
        • 010-NLP算法
        • 016-统计分析组件
        • 006-回归算法
        • 007-异常检测算法
        • 013-模型评估组件
        • 005-分类算法
        • 018-时间序列组件
      • 画布操作说明
        • 005-AutoML(自动调参)
        • 002-开始训练
        • 001-概述
    • 预置模型调参建模
      • 预置模型调参简介
      • 神经网络训练搜索
      • 开发视觉模型
        • 视觉任务简介
        • 查看训练结果
        • 创建视觉任务
        • 配置视觉任务
        • 开发参考
          • 视觉预训练模型
          • 超参数配置参考
          • 评估报告参考
          • 自动超参搜索配置参考
          • 数据增强算子参考
          • 训练时长设置参考
          • 网络选型参考
      • 开发表格预测模型
        • 创建表格预测任务
        • 配置专家模式表格数据预测任务
        • 查看训练结果
        • 配置AUTOML模式表格数据预测任务
        • 表格预测任务简介
      • 开发文字识别模型
        • 文字识别任务简介
        • 文字识别任务操作流程
      • 开发自然语言处理模型
        • 查看训练结果
        • 自然语言处理任务简介
        • 配置NLP任务
        • 创建NLP任务
        • 代码模板升级及迁移说明
  • 文档中心
  • arrow
  • 全功能AI开发平台BML
  • arrow
  • 模型训练
  • arrow
  • 自定义作业建模
  • arrow
  • 自动搜索作业
  • arrow
  • 创建自动搜索作业
本页目录
  • 前提条件
  • 新建作业
  • 使用自动搜索作业训练模型
  • 基本信息
  • 算法配置
  • 预置环境变量
  • 数据集配置
  • 自动搜索配置
  • 资源配置
  • 查看搜索结果及可视化
  • 查看搜索结果
  • 查看可视化视图
  • 发布模型

创建自动搜索作业

更新时间:2025-08-21

创建自动搜索作业

1.前提条件
2.新建作业
3.使用自动搜索作业训练模型
3.1 基本信息
3.2 算法配置
3.3 数据集配置
3.4 自动搜索配置
3.5 资源配置
3.6 查看搜索结果及可视化
4.发布模型

前提条件

  1. 自定义作业需要依赖于BOS对象存储读取输入文件,创建自定义作业之前需要保证您已经开通了BOS对象存储的服务。
  2. 授权自定义作业读写您的BOS对象存储,以顺利进行自定义作业的配置。

image.png

  1. 在BOS中存储创建Bucket,并且存储用于训练的代码文件和数据集,创建一个空文件夹用于存储代码的输出文件。

新建作业

  1. 在导航栏选择『自定义作业-自动搜索作业』,进入自动搜索作业的列表页。
  2. 点击『新建作业』,进入配置自动搜索作业流程

image.png

使用自动搜索作业训练模型

自动搜索作业提供了多种开源框架、搜索算法以及优质的训练资源。您可以上传代码文件,数据集到BOS对象存储,通过自动搜索作业完成训练后,平台提供了每组超参数组合的参数值及其对应的模型评估指标、训练结果会输出到BOS中的指定输出目录,同时您也可以通过链接进入可视化界面查看具体搜索结果。

基本信息

填写作业名称和备注信息

2024-02-04 at 15.12.20@2x.png

算法配置

2024-02-04 at 15.12.01@2x.png

  1. 选择算法框架:选择训练代码文件使用的算法框架,目前BML支持Paddle,TensorFlow,Pytorch,Sklearn,XGBoost五种主流算法框架。
  2. 选择代码文件:从BOS对象存储中选取代码文件,完成代码录入。单击文件夹符号,从弹窗中选择bucket及文件夹。双击bucket或者单击『>』图标,即可进入下一级。

image.png

  1. 代码文件要求如下:

    • 选取对象可以是一个文件或者文件夹
    • 所选代码文件必须与所选算法框架对应,所选路径必须包含适配自动搜索作业代码编写规范的代码文件,查看代码文件编写规范(链接到代码文件编写规范)。
  2. 输入启动命令,支持python和shell两类脚本:

    • 当代码文件项选择一个单独文件时,启动命令指向该启动文件
    • 当代码文件项选择一个文件夹时,启动命令需指向该文件夹下的特定启动脚本,例如bash bml_job.sh
  3. 可选高级配置。提交训练作业时,可以通过高级配置来自定义环境变量。

    • 手动配置:通过手动填写环境变量来配置,包括配置变量名称与对应取值。

    2024-02-04 at 18.59.02@2x.png

    • YAML文件:通过上传YAML文件来配置环境变量,支持本地上传和BOS存储导入两种方式。注意:环境变量最多配置100组,平台将在解析时对超出部分做自动截断处理。

    此外,BML平台亦提供预置环境变量,由BML平台预先定义,不建议您自行覆盖修改。

预置环境变量

作业类型 变量名 变量含义 示例 默认值
自动搜索作业 MANAGER_ADDRESS 管理自动搜索作业节点exp-manager的svc地址 172.16.227.135:8888 无
NVIDIA_VISIBLE_DEVICES 训练节点可见的gpu卡设备 GPU-ae58e6cc-1dec-bcb9-820c-e433d01afda6 无
PYTHONPATH 训练任务节点汇报训练结果管理节点的sdk路径 /home/sdk/output /home/sdk/output

数据集配置

自动搜索作业数据集配置方式是从BOS中选取数据集。在弹出的对话框中选择数据集对应的bucket和文件夹。注:选择的数据集路径与代码训练时传入代码的训练集、测试集路径一致。为保证训练效率,最好将数据存放在压缩包内。

image.png

自动搜索配置

image.png

  1. 配置方式:
  • 手动配置:用户需要在平台上手动选择搜索策略以及配置对应的参数。
  • yaml文件:用户可以通过yaml文件来设置自动搜索配置,文件上传方式分为本地上传与从BOS中选取两种。

image.png

  1. 搜索策略:

自动搜索作业目前提供了5种搜索算法,见搜索算法简介。

  1. 参数配置:
  • 选择搜索策略后,参数配置表格会提供对应的参数进行选择,其中关于搜索算法的参数说明见搜索算法简介。
  • 非搜索参数的说明如下:

    • 数据采样比例:超参搜索需要进行多个模型的训练,因此为了提高效率,减少总的搜索耗时,可以设置训练集的数据采样比例。
    • 评价指标:用户在代码中可以自定义评价指标的计算方式,只需要在平台参数配置表格中填写评价指标的名称、优化方向(最大值/最小值)以及早停指标即可。下图是一个填写实例,评价指标:acc,最大值优化,当搜索实验的某个训练结果,acc的数值达到100%时,终止整个自动搜索任务。 image.png
    • 搜索参数:用户需要将待搜索的超参数填入显示框内,搜索参数的名称需要与代码中的名称保持严格一致!如搜索任务中有多个参数需要搜索,点击『+添加参数』即可,如下为搜索参数的参数类型以及对应的取值范围说明:

      • 随机整数:参数范围中填写搜索参数的上下界,算法在其中随机取整。
      • 离散值:参数范围中填写搜索参数的所有可能取值,以英文逗号隔开,算法会随机从中取值。
      • 平均采样:参数范围中填写搜索参数的上下界,算法在其中随机取值,包括整数和小数。
      • 对数平均采样:参数范围中填写搜索参数的上下界,算法在其对数尺度上随机取值,该参数类型适用于学习率等参数范围有尺度差异的超参数。
        image.png

资源配置

BML提供CPU和GPU两类训练机型。

CPU机型供算法框架为sklearn,XGBoost时使用,用于机器学习训练:

机型 规格说明
CPU 4核 CPU 4核16GB内存
CPU 16核 CPU 16核64GB内存

GPU机型供算法框架为Paddle,TensorFlow,Pytorch时使用,用于深度学习训练:

机型 规格说明
GPU V100 TeslaGPU_V100_32G显存单卡_12核CPU_56G内存
GPU P4 TeslaGPU_P4_8G显存单卡_12核CPU_40G内存

查看搜索结果及可视化

查看搜索结果

自动搜索作业运行完成后,在任务列表页中点击查看进入任务详情界面(任务运行时,也可点击查看实时信息)

image.png

点击搜索结果,表格中会显示所有试验的详细信息,如评价指标的值、搜索耗时,试验状态等;点击日志,可以查看每个试验的运行日志。

image.png

点击详情可以查看每个试验的超参数取值。

image.png

查看可视化视图

可视化界面目前仅保存了所有试验中指标最好的5个结果。

  1. 点击查看可视化视图,可以进入飞桨VisualDL可视化界面。
  2. 点击标题栏的超参可视化,自动搜索作业一共提供了三种图:
  • 表格视图:搜索结果以表格的形式呈现。 image.png
  • 平行坐标图

    • 图中右方为柱状热力图,当在右上方选择一个参数时,平行坐标图便会以该参数作为基准结果,参数组合的折线颜色便会依据该组合在选择参数上的取值而改变。
    • 自动搜索作业中,选择评价指标(图中为acc)作为基准结果,然后观察各个超参数对其的影响大小。若某个超参数上相同颜色的折线较为集中,不同颜色有一定的距离,则说明该参数对于结果影响很大;而如果某个超参数上线条颜色混乱,则较大可能该参数对于结果的影响很小。 image.png
  • 散点图:呈现超参数与指标之间的分布关系。 image.png

发布模型

自动搜索作业训练完成后支持将最好的5个模型直接发布到模型仓库。

  1. 模型列表中,训练完成的模型支持『发布』操作,点击『发布』进入发布界面。 image.png
  2. 在发布界面,完成相关配置,如下所示:
  • 填写下图所示基本信息。『模型类型』和『版本』由系统自动生成,不支持修改。重新发布时,『模型名称和『模型描述』会自动填充,无需再次填写。 image.png
  • 根据算法框架的不同,您还需要在发布界面填写响应的额外配置项信息。
算法框架 额外配置项
PaddlePaddle 无
TensorFlow 无。说明:自动搜索作业支持发布pb格式的模型文件到模型仓库,因此代码中需要保存pb格式的模型
Pytorch 从BOS中选择源代码并输入源代码的主文件名。说明:选取的代码为启动服务的推理代码,具体说明点击这里(链接到pytorch代码示例中的推理代码部分)
Sklearn/XGBoost 模型文件格式:支持发布pickle格式或joblib格式模型到模型仓库。模型文件:选择一个搜索结果后,下方模型文件会自动填充对应试验的路径,用户只需要在对应路径下选中保存的模型即可。说明:其他框架在保存模型时,模型名称是固定的,而机器学习框架中通常是用户指定,因此在发布模型时需要手动选择

上一篇
训练作业
下一篇
yaml文件编写规范