自动搜索作业代码编写规范

全功能AI开发平台 BML

  • 版本发布记录
  • 快速开始
    • 用BML实现表格预测
    • 用BML实现序列标注
    • 用BML实现文本实体抽取
    • 用BML实现图片分类
    • 用BML实现实例分割
    • 用BML评价短文本相似度
    • 用BML实现开源大模型的预训练(Post-pretrain)
    • 用BML实现文本分类
    • 用BML实现物体检测
  • 模型仓库
    • 从训练任务导入模型
    • 查看模型
    • 创建模型
    • 模型仓库简介
    • 从本地导入模型
    • 校验模型
    • 服务代码文件示例
      • Sklearn服务代码文件示例
      • XGBoost服务代码文件示例
  • 平台管理
    • 权限管理
    • 在BML平台使用并行文件系统PFS和对象存储BOS
    • 在BML平台使用容器镜像服务CCR
    • 在BML使用外部镜像
    • 项目空间管理
    • 镜像管理
      • 镜像使用
      • 镜像管理简介
      • 常见问题
      • 自定义镜像
    • 资源管理
      • 资源池管理简介
      • 资源池使用简介
  • 预测部署
    • 批量预测(用户资源池)API
    • 文字识别模型部署
      • 文字识别任务API参考文档
      • 文字识别任务公有云部署
    • 通用模型部署
      • 标准接口规范参考
      • Paddle框架API调用文档
      • sklearn框架API调用文档
      • 公有云部署
      • XGBoost框架API调用文档
      • tensorflow框架API调用文档
      • Pytorch框架API调用文档
      • 通用类模型API参考
      • 错误码
    • 语音技术模型部署
      • 声音分类API调用文档
    • 视觉模型部署
      • 智能边缘控制台-多节点版
      • 端云协同服务部署
      • 智能边缘控制台-单节点版
      • 视觉任务模型部署整体说明
      • 软硬一体方案部署
        • 视觉任务Jetson专用SDK集成文档
        • 如何获取视觉任务软硬一体产品
        • 视觉任务EdgeBoard(VMX)专用SDK集成文档
        • 视觉任务EdgeBoard(FZ)专用SDK集成文档
        • 视觉任务专用辨影SDK集成开发文档
      • 私有服务器部署
        • 视觉模型如何部署在私有服务器
        • 私有API
          • 如何发布私有API
          • 图像分类-单图单标签私有API集成文档
          • 图像分类-单图多标签私有API集成文档
          • 物体检测私有API集成文档
        • 服务器端SDK
          • 视觉任务服务器端LinuxSDK集成文档-Python
          • 视觉任务服务器端LinuxSDK集成文档-C++
          • 如何发布服务器端SDK
          • 视觉任务服务器端WindowsSDK集成文档
          • 视觉任务服务器端SDK简介
      • 设备端SDK部署
        • 视觉任务WindowsSDK集成文档
        • 视觉任务iOSSDK集成文档
        • 视觉任务LinuxSDK集成文档-Python
        • 视觉任务LinuxSDK集成文档-C++
        • 视觉任务设备端SDK使用说明
        • 如何发布视觉任务设备端SDK
        • 视觉任务AndroidSDK集成文档
      • 公有云部署
        • 文字识别API参考文档
        • 视觉任务公有云部署
        • 物体检测API参考文档
        • 图像分类-单图单标签API参考文档
        • 实例分割API参考文档
        • 图像分类-单图多标签API参考文档
    • 表格预测模型部署
      • 整体说明
      • 公有云部署
    • 公有云部署管理
      • 配置AB测试版本
      • 批量预测服务
      • 公有云部署
      • 公有云部署简介
      • 配置休眠策略
    • NLP模型部署
      • 自然语言处理任务模型部署整体说明
      • 私有服务器部署
        • 如何部署在私有服务器
        • 私有服务API说明
          • 私有部署说明-短文本相似度
          • 私有化部署接口说明-文本分类
          • 私有部署文档-序列标注
          • 文本实体抽取API调用文档
      • 公有云部署
        • 短文本匹配API调用文档
        • 文本实体抽取私有API调用说明
        • 如何发布自然语言处理任务API
        • 文本分类-多标签API调用文档
        • 文本分类API调用文档
        • 序列标注API调用文档
  • 数据服务
    • 数据服务简介
    • 智能数据API
    • 公有云服务调用数据反馈
    • 智能标注
      • 文本智能标注介绍及原理说明
      • 图像智能标注介绍说明
    • 管理视觉数据
      • 实例分割数据导入与标注
        • 数据标注说明
        • 导入未标注数据
        • 导入已标注数据
      • 物体检测数据导入与标注
        • 物体检测数据标注说明
        • 物体检测导入未标注数据
        • 物体检测导入已标注数据
      • 图像分类数据导入与标注
        • 图像分类导入未标注数据
        • 图像分类导入已标注数据
        • 图像分类数据标注说明
    • 管理文本数据
      • 文本分类数据导入与标注
        • 文本分类数据标注说明
        • 文本分类数据导入与标注
        • 数据去重策略
      • 序列标注数据导入与标注
        • 序列标注标注说明
        • 序列标注数据导入
        • 数据去重策略
      • 文本实体抽取数据标注
        • 文本实体抽取数据标注
        • 文本实体抽取数据导入
        • 数据去重策略
      • 短文本匹配数据导入与标注
        • 短文本匹配数据导入与标注
        • 数据去重策略说明
        • 短文本匹配数据标注
  • 产品简介
    • BML平台升级公告
    • 平台重点升级介绍
    • 产品优势
    • 产品功能
    • 什么是BML
    • 文心大模型
  • 产品定价
    • 服务器部署价格说明
    • 专项适配硬件部署价格说明
    • 公有云部署计费说明
    • 批量预测计费说明
    • 模型训练计费说明
    • 通用小型设备部署价格说明
  • 模型训练
    • Notebook建模
      • 创建并启动Notebook
      • Notebook导入数据集
      • 保存Notebook中的模型
      • Notebook使用参考
      • 常见问题
      • 数据模型可视化功能说明
      • Notebook简介
      • 发布模型
      • 配置模型
      • 使用Notebook开发模型
      • 如何使用Notebook SSH 功能
      • Notebook从训练到部署快速入门
        • Codelab Notebook自定义环境部署最佳实践
        • 基于Notebook的图像分类模板使用指南
        • 基于 Notebook 的 NLP 通用模板使用指南
        • Notebook 模板使用指南概述
        • 基于 Notebook 的通用模板使用指南
        • 基于 Notebook 的物体检测模板使用指南
    • 自定义作业建模
      • 自定义作业简介
      • 训练作业API
      • 训练作业
        • 使用训练作业训练模型
        • 创建训练作业
        • 发布模型
        • 训练作业代码示例
          • TensorFlow 1.13.2
          • AIAK- Training Pytorch版
          • TensorFlow 2.3.0
          • Blackhole 1.0.0
          • Pytorch 1.7.1
          • Sklearn 0.23.2
          • XGBoost 1.3.1
          • PaddlePaddle 2.0.0rc
      • 自动搜索作业
        • 创建自动搜索作业
        • yaml文件编写规范
        • 自动搜索作业简介
        • 自动搜索作业代码编写规范
        • 自动搜索作业代码示例
          • XGBoost 1.3.1代码规范
          • TensorFlow 1.13.2代码规范
          • Sklearn 0.23.2代码规范
          • Pytorch 1.7.1代码规范
          • Tensorflow2.3.0代码规范
          • PaddlePaddle 2.1.1代码规范
    • 可视化建模
      • 快速入门
      • 概述
      • 组件菜单
        • 001-基本操作
        • 003-查看模型特征溯源
        • 007-组件状态
        • 008-组件资源配置
        • 006-组件列选择
        • 002-查看模型可解释性
        • 004-查看特征重要性
      • 组件说明
        • 015-图算法
        • 004-特征工程组件
        • 003-数据处理组件
        • 012-预测组件
        • 008-聚类算法
        • 009-Python算法组件
        • 002-数据集组件
        • 014-自然语言处理组件
        • 010-NLP算法
        • 016-统计分析组件
        • 006-回归算法
        • 007-异常检测算法
        • 013-模型评估组件
        • 005-分类算法
        • 018-时间序列组件
      • 画布操作说明
        • 005-AutoML(自动调参)
        • 002-开始训练
        • 001-概述
    • 预置模型调参建模
      • 预置模型调参简介
      • 神经网络训练搜索
      • 开发视觉模型
        • 视觉任务简介
        • 查看训练结果
        • 创建视觉任务
        • 配置视觉任务
        • 开发参考
          • 视觉预训练模型
          • 超参数配置参考
          • 评估报告参考
          • 自动超参搜索配置参考
          • 数据增强算子参考
          • 训练时长设置参考
          • 网络选型参考
      • 开发表格预测模型
        • 创建表格预测任务
        • 配置专家模式表格数据预测任务
        • 查看训练结果
        • 配置AUTOML模式表格数据预测任务
        • 表格预测任务简介
      • 开发文字识别模型
        • 文字识别任务简介
        • 文字识别任务操作流程
      • 开发自然语言处理模型
        • 查看训练结果
        • 自然语言处理任务简介
        • 配置NLP任务
        • 创建NLP任务
        • 代码模板升级及迁移说明
所有文档
menu
没有找到结果,请重新输入

全功能AI开发平台 BML

  • 版本发布记录
  • 快速开始
    • 用BML实现表格预测
    • 用BML实现序列标注
    • 用BML实现文本实体抽取
    • 用BML实现图片分类
    • 用BML实现实例分割
    • 用BML评价短文本相似度
    • 用BML实现开源大模型的预训练(Post-pretrain)
    • 用BML实现文本分类
    • 用BML实现物体检测
  • 模型仓库
    • 从训练任务导入模型
    • 查看模型
    • 创建模型
    • 模型仓库简介
    • 从本地导入模型
    • 校验模型
    • 服务代码文件示例
      • Sklearn服务代码文件示例
      • XGBoost服务代码文件示例
  • 平台管理
    • 权限管理
    • 在BML平台使用并行文件系统PFS和对象存储BOS
    • 在BML平台使用容器镜像服务CCR
    • 在BML使用外部镜像
    • 项目空间管理
    • 镜像管理
      • 镜像使用
      • 镜像管理简介
      • 常见问题
      • 自定义镜像
    • 资源管理
      • 资源池管理简介
      • 资源池使用简介
  • 预测部署
    • 批量预测(用户资源池)API
    • 文字识别模型部署
      • 文字识别任务API参考文档
      • 文字识别任务公有云部署
    • 通用模型部署
      • 标准接口规范参考
      • Paddle框架API调用文档
      • sklearn框架API调用文档
      • 公有云部署
      • XGBoost框架API调用文档
      • tensorflow框架API调用文档
      • Pytorch框架API调用文档
      • 通用类模型API参考
      • 错误码
    • 语音技术模型部署
      • 声音分类API调用文档
    • 视觉模型部署
      • 智能边缘控制台-多节点版
      • 端云协同服务部署
      • 智能边缘控制台-单节点版
      • 视觉任务模型部署整体说明
      • 软硬一体方案部署
        • 视觉任务Jetson专用SDK集成文档
        • 如何获取视觉任务软硬一体产品
        • 视觉任务EdgeBoard(VMX)专用SDK集成文档
        • 视觉任务EdgeBoard(FZ)专用SDK集成文档
        • 视觉任务专用辨影SDK集成开发文档
      • 私有服务器部署
        • 视觉模型如何部署在私有服务器
        • 私有API
          • 如何发布私有API
          • 图像分类-单图单标签私有API集成文档
          • 图像分类-单图多标签私有API集成文档
          • 物体检测私有API集成文档
        • 服务器端SDK
          • 视觉任务服务器端LinuxSDK集成文档-Python
          • 视觉任务服务器端LinuxSDK集成文档-C++
          • 如何发布服务器端SDK
          • 视觉任务服务器端WindowsSDK集成文档
          • 视觉任务服务器端SDK简介
      • 设备端SDK部署
        • 视觉任务WindowsSDK集成文档
        • 视觉任务iOSSDK集成文档
        • 视觉任务LinuxSDK集成文档-Python
        • 视觉任务LinuxSDK集成文档-C++
        • 视觉任务设备端SDK使用说明
        • 如何发布视觉任务设备端SDK
        • 视觉任务AndroidSDK集成文档
      • 公有云部署
        • 文字识别API参考文档
        • 视觉任务公有云部署
        • 物体检测API参考文档
        • 图像分类-单图单标签API参考文档
        • 实例分割API参考文档
        • 图像分类-单图多标签API参考文档
    • 表格预测模型部署
      • 整体说明
      • 公有云部署
    • 公有云部署管理
      • 配置AB测试版本
      • 批量预测服务
      • 公有云部署
      • 公有云部署简介
      • 配置休眠策略
    • NLP模型部署
      • 自然语言处理任务模型部署整体说明
      • 私有服务器部署
        • 如何部署在私有服务器
        • 私有服务API说明
          • 私有部署说明-短文本相似度
          • 私有化部署接口说明-文本分类
          • 私有部署文档-序列标注
          • 文本实体抽取API调用文档
      • 公有云部署
        • 短文本匹配API调用文档
        • 文本实体抽取私有API调用说明
        • 如何发布自然语言处理任务API
        • 文本分类-多标签API调用文档
        • 文本分类API调用文档
        • 序列标注API调用文档
  • 数据服务
    • 数据服务简介
    • 智能数据API
    • 公有云服务调用数据反馈
    • 智能标注
      • 文本智能标注介绍及原理说明
      • 图像智能标注介绍说明
    • 管理视觉数据
      • 实例分割数据导入与标注
        • 数据标注说明
        • 导入未标注数据
        • 导入已标注数据
      • 物体检测数据导入与标注
        • 物体检测数据标注说明
        • 物体检测导入未标注数据
        • 物体检测导入已标注数据
      • 图像分类数据导入与标注
        • 图像分类导入未标注数据
        • 图像分类导入已标注数据
        • 图像分类数据标注说明
    • 管理文本数据
      • 文本分类数据导入与标注
        • 文本分类数据标注说明
        • 文本分类数据导入与标注
        • 数据去重策略
      • 序列标注数据导入与标注
        • 序列标注标注说明
        • 序列标注数据导入
        • 数据去重策略
      • 文本实体抽取数据标注
        • 文本实体抽取数据标注
        • 文本实体抽取数据导入
        • 数据去重策略
      • 短文本匹配数据导入与标注
        • 短文本匹配数据导入与标注
        • 数据去重策略说明
        • 短文本匹配数据标注
  • 产品简介
    • BML平台升级公告
    • 平台重点升级介绍
    • 产品优势
    • 产品功能
    • 什么是BML
    • 文心大模型
  • 产品定价
    • 服务器部署价格说明
    • 专项适配硬件部署价格说明
    • 公有云部署计费说明
    • 批量预测计费说明
    • 模型训练计费说明
    • 通用小型设备部署价格说明
  • 模型训练
    • Notebook建模
      • 创建并启动Notebook
      • Notebook导入数据集
      • 保存Notebook中的模型
      • Notebook使用参考
      • 常见问题
      • 数据模型可视化功能说明
      • Notebook简介
      • 发布模型
      • 配置模型
      • 使用Notebook开发模型
      • 如何使用Notebook SSH 功能
      • Notebook从训练到部署快速入门
        • Codelab Notebook自定义环境部署最佳实践
        • 基于Notebook的图像分类模板使用指南
        • 基于 Notebook 的 NLP 通用模板使用指南
        • Notebook 模板使用指南概述
        • 基于 Notebook 的通用模板使用指南
        • 基于 Notebook 的物体检测模板使用指南
    • 自定义作业建模
      • 自定义作业简介
      • 训练作业API
      • 训练作业
        • 使用训练作业训练模型
        • 创建训练作业
        • 发布模型
        • 训练作业代码示例
          • TensorFlow 1.13.2
          • AIAK- Training Pytorch版
          • TensorFlow 2.3.0
          • Blackhole 1.0.0
          • Pytorch 1.7.1
          • Sklearn 0.23.2
          • XGBoost 1.3.1
          • PaddlePaddle 2.0.0rc
      • 自动搜索作业
        • 创建自动搜索作业
        • yaml文件编写规范
        • 自动搜索作业简介
        • 自动搜索作业代码编写规范
        • 自动搜索作业代码示例
          • XGBoost 1.3.1代码规范
          • TensorFlow 1.13.2代码规范
          • Sklearn 0.23.2代码规范
          • Pytorch 1.7.1代码规范
          • Tensorflow2.3.0代码规范
          • PaddlePaddle 2.1.1代码规范
    • 可视化建模
      • 快速入门
      • 概述
      • 组件菜单
        • 001-基本操作
        • 003-查看模型特征溯源
        • 007-组件状态
        • 008-组件资源配置
        • 006-组件列选择
        • 002-查看模型可解释性
        • 004-查看特征重要性
      • 组件说明
        • 015-图算法
        • 004-特征工程组件
        • 003-数据处理组件
        • 012-预测组件
        • 008-聚类算法
        • 009-Python算法组件
        • 002-数据集组件
        • 014-自然语言处理组件
        • 010-NLP算法
        • 016-统计分析组件
        • 006-回归算法
        • 007-异常检测算法
        • 013-模型评估组件
        • 005-分类算法
        • 018-时间序列组件
      • 画布操作说明
        • 005-AutoML(自动调参)
        • 002-开始训练
        • 001-概述
    • 预置模型调参建模
      • 预置模型调参简介
      • 神经网络训练搜索
      • 开发视觉模型
        • 视觉任务简介
        • 查看训练结果
        • 创建视觉任务
        • 配置视觉任务
        • 开发参考
          • 视觉预训练模型
          • 超参数配置参考
          • 评估报告参考
          • 自动超参搜索配置参考
          • 数据增强算子参考
          • 训练时长设置参考
          • 网络选型参考
      • 开发表格预测模型
        • 创建表格预测任务
        • 配置专家模式表格数据预测任务
        • 查看训练结果
        • 配置AUTOML模式表格数据预测任务
        • 表格预测任务简介
      • 开发文字识别模型
        • 文字识别任务简介
        • 文字识别任务操作流程
      • 开发自然语言处理模型
        • 查看训练结果
        • 自然语言处理任务简介
        • 配置NLP任务
        • 创建NLP任务
        • 代码模板升级及迁移说明
  • 文档中心
  • arrow
  • 全功能AI开发平台BML
  • arrow
  • 模型训练
  • arrow
  • 自定义作业建模
  • arrow
  • 自动搜索作业
  • arrow
  • 自动搜索作业代码编写规范
本页目录
  • 代码入参说明
  • 必要接口说明

自动搜索作业代码编写规范

更新时间:2025-08-21

自动搜索作业代码编写规范

1.代码入参说明
2.必要接口说明

代码入参说明

自动搜索作业的实现过程:通过搜索算法获取多个超参数组合,每个组合都会通过训练得到一个评估结果,以此最终判断超参数组合的优劣,而用户编写的代码即是用于实现单次训练。

用户需要通过argparse模块接受在平台中填写的信息以及搜索算法反馈的超参数组合。

image.png

参数说明:

参数 说明
train_dir/test_dir/output_dir 用户在平台中填写的训练集路径、测试集路径、输出路径及其中的文件会同步到代码训练环境中,对应文件名称分别为argparse参数中的default默认值:trian_data/test_data/output,因此请用户切记不要修改这三处的default参数。
job-id 当前自动搜索作业的任务id,系统生成,用于构成输出路径的一部分
trial-id 任务中的每个试验都会拥有独立的试验id,argparse接受该参数用于构成模型输出路径的一部分。注:每个试验的模型保存路径为:output_dir/job-id/trial-id
metric 接受用户在平台上填写的评价指标的名称
data_sampling_scale 接受用户在平台上填写的数据采样比例

其余用户自定义的待搜索的超参数同样需要写在argparse模块中,且名称与平台中填写的完全一致,每个试验运行时搜索算法会将参数值传入代码。

必要接口说明

自动搜索作业给予了用户极高的自由度,但仍然存在一些必须实现的接口,否则无法在平台中完成作业的训练,在编写代码前,请务必仔细阅读下面的几点说明。

  • 代码入参说明中提到的argparse模块是必须实现的。
  • 模型训练部分的代码,用户可以自定义实现,pytorch框架比较特殊,需要额外实现推理代码,见代码示例(链接到pytorch推理代码处),其余框架仅需要实现训练代码即可,平台为用户提供了推理代码用于预测,因此,模型保存的路径与格式,需要统一。

    • 模型必须保存到args.output_dir/args.job-id/args.trial-id中,这也是为了方便用户最终选择需要的模型。
    • 所有示例代码中main函数均是按照获取参数、加载数据集、模型定义、模型训练、模型保存、模型评估、上报结果的形式进行封装的,每种框架的模型保存方式在代码示例中的模型保存函数已经详细给出,特别注意,用户编写的模型保存函数的名称可以是自定义的,但必须将对应格式的模型保存到对应的路径下! image.png
  • 上报结果的函数实现:每次训练完成后,代码需要将评估结果汇报给搜索算法,用于下一个超参数组合的建议以及是否早停的判断。用户可以通过调用平台提供的SDK接口实现该功能: image.png
    所有示例均是通过report_final函数实现结果的上报,传入的参数为args以及评估结果的值,函数内部结构建议用户不要做任何修改!上报结果实际上是调用的AMaasTools的report_final_result函数,如下为函数入参说明: metric:评价指标以字典的形式传入。 export_model_path:保存模型文件的文件夹路径,2中已经进行了说明 * checkpoint_path:模型的权重,该参数一般设为空字符,只有当搜索算法选择进化算法PBT时,才会使用,该算法每次试验前会用到其余试验的模型权重,因此每次模型训练完需要将权重保存路径进行上传,见4小点。 image.png
  • 进化算法PBT:该搜索算法专门用于深度学习,详情见搜索算法简介,当采用该算法时,需要在代码中提供接受之前试验权重的接口,代码示例中的pytorch框架就是采用了进化算法PBT的搜索算法,点击这里查看,如下是PBT算法的关键步骤:

    • 首先在argparse模块中需要新增resume_checkpoint_path参数,在训练时,系统会传入之前试验的模型文件路径,如果该试验属于随机初始化的第一个批次,则会传入空字符。用户只需添加该参数,具体传入内容由搜索算法决定。 image.png
    • 接着需要实现模型加载的函数,从传入的模型路径中加载模型,从而实现继承之前试验中的模型权重的功能。 image.png
    • 下图为结果上报函数,checkpoint_path处不再是空字符,而是模型文件的保存路径。注意:export_model_path需要传入的是模型所在的文件夹路径,而checkpoint_path是模型文件的路径! image.png

上一篇
自动搜索作业简介
下一篇
自动搜索作业代码示例