Sequence-Column

数据仓库 PALO

  • 功能发布记录
  • 操作手册1
    • LDAP认证
    • 时区
    • 使用S3-SDK访问对象存储
    • 权限管理
    • 物化视图
    • 变量
    • 资源管理
    • 数据更新与删除
      • 标记删除
      • Sequence-Column
      • 数据更新
      • 数据删除
    • 备份与恢复
      • 备份与恢复
    • 数据导出1
      • SELECT INTO OUTFILE
      • MySQL Dump
      • 数据导出概述
      • Export
    • 数据导出
      • 全量数据导出
      • 导出查询结果集
      • 导出总览
      • 导出数据到外部表
    • 查询加速1
      • 查询缓存
      • 物化视图
        • 同步物化视图
        • 物化视图概览
        • 异步物化视图
          • 异步物化视图常见问题
          • 最佳实践
          • 异步物化视图概述
          • 创建、查询与维护异步物化视图
    • 数据导入
      • JSON格式数据导入说明
      • 导入本地数据
      • 导入BOS中的数据
      • 导入事务和原子性
      • 通过外部表同步数据
      • 使用JDBC同步数据
      • 列的映射、转换与过滤
      • 订阅Kafka日志
      • 严格模式
      • 导入总览
    • 数据更新与删除1
      • 事务
      • 数据更新
        • 主键模型的导入更新
        • 主键模型的 Update 更新
        • 数据更新概述
        • 主键模型的更新并发控制
        • 聚合模型的导入更新
      • 数据删除
        • 删除操作概述
        • Truncate 操作
        • 表原子替换
        • Delete 操作
        • 基于导入的批量删除
        • 临时分区
    • 数据导入1
      • 高并发导入优化(Group Commit)
      • 导入概览
      • 异常数据处理
      • 导入高可用性
      • 导入时实现数据转换
      • 数据源
        • Kafka
        • S3 兼容存储
        • 从其他 TP 系统迁移数据
        • HDFS
        • 从其他 AP 系统迁移数据
        • Flink
        • 本地文件
      • 导入方式
        • Broker Load
        • MySQL Load
        • Insert Into Values
        • Stream Load
        • Insert Into Select
        • Routine Load
      • 文件格式
        • CSV
        • JSON
        • Parquet
        • ORC
      • 复杂数据类型
        • MAP
        • Variant
        • JSON
        • STRUCT
        • Bitmap
        • HLL
        • ARRAY
  • 开发指南
    • 迁移ClickHouse数据
    • Doris集群间数据迁移
    • 数据更新与删除
      • 事务
      • 数据更新
        • 主键模型的导入更新
        • 主键模型的 Update 更新
        • 数据更新概述
        • 主键模型的更新并发控制
        • 聚合模型的导入更新
      • 数据删除
        • 删除操作概述
        • Truncate 操作
        • 表原子替换
        • Delete 操作
        • 基于导入的批量删除
        • 临时分区
    • 查询加速
      • 查询缓存
      • Colocation Join
      • 高并发点查
      • Hint
        • Hint 概述
        • Leading Hint
        • Distribute Hint
      • 物化视图
        • 同步物化视图
        • 物化视图概览
        • 异步物化视图
          • 异步物化视图常见问题
          • 最佳实践
          • 异步物化视图概述
          • 创建、查询与维护异步物化视图
      • 高效去重
        • BITMAP 精准去重
        • HLL 近似去重
      • 优化技术原理
        • TOPN 查询优化
        • 统计信息
        • Pipeline 执行引擎
        • 查询优化器介绍
        • Runtime Filter
      • 查询调优概述
        • 调优概述
        • 诊断工具
        • 分析工具
        • 调优流程
      • 查询优化实践
        • 常见调优参数
        • 计划调优
          • 使用 Hint 控制代价改写
          • 使用异步物化视图透明改写
          • 使用 Leading Hint 控制 Join 顺序
          • 优化表 Schema 设计
          • 使用分区裁剪优化扫表
          • 优化索引设计和使用
          • 使用 Hint 调整 Join Shuffle 方式
          • DML 计划调优
          • 使用 Colocate Group 优化 Join
          • 使用同步物化视图透明改写
          • 使用 SQL Cache 加速查询
        • 执行调优
          • 数据倾斜处理
          • RuntimeFilter 的等待时间调整
          • 并行度调优
    • 数据查询
      • 连接(JOIN)
      • 子查询
      • 复杂类型查询
      • 列转行 (Lateral View)
      • MySQL 兼容性
      • 聚合多维分析
      • 分析函数(窗口函数)
      • 公用表表达式(CTE)
      • 自定义函数
        • 别名函数
        • Java UDF, UDAF, UDTF
    • 数据导出
      • SELECT INTO OUTFILE
      • MySQL Dump
      • 最佳实践
      • 数据导出概述
      • Export
    • 数据导入
      • 高并发导入优化(Group Commit)
      • 异常数据处理
      • 导入高可用性
      • 导入时实现数据转换
      • 导入最佳实践
      • 数据源
        • Kafka
        • Snowflake
        • S3 兼容存储
        • Google Cloud Storage
        • 从其他 TP 系统迁移数据
        • Azure Storage
        • 腾讯云 COS
        • MinIO
        • HDFS
        • 阿里云 OSS
        • 华为云 OBS
        • 从其他 AP 系统迁移数据
        • Flink
        • Redshift
        • Amazon S3
        • 本地文件
        • BigQuery
      • 导入方式
        • Broker Load
        • MySQL Load
        • Insert Into Values
        • Stream Load
        • Insert Into Select
        • Routine Load
      • 文件格式
        • CSV
        • JSON
        • Parquet
        • ORC
      • 复杂数据类型
        • MAP
        • Variant
        • JSON
        • STRUCT
        • Bitmap
        • HLL
        • ARRAY
    • BI工具接入
      • Sugar
      • Navicat
      • Tableau
      • DBeaver
      • 永洪BI
      • FineBI(帆软)
    • 数据库连接
      • 通过 MySQL 协议连接
      • 基于 Arrow Flight SQL 的高速数据传输链路
    • 湖仓一体
      • 分析 S3或HDFS 上的文件
      • 湖仓一体概述
      • SQL 方言兼容
      • 弹性计算节点
      • 云服务认证接入
      • 元数据缓存
      • 外表统计信息
      • 数据缓存
      • 数据库分析
        • MySQL
        • JDBC Catalog
        • Oracle
        • OceanBase
        • SAP HANA
        • 阿里云 MaxCompute
        • ClickHouse
        • PostgreSQL
        • IBM Db2
        • SQL Server
        • Elasticsearch
      • 湖仓一体最佳实践
        • 使用 PALO 和 Paimon
        • 使用 PALO 和 Iceberg
        • 使用 PALO 和 Hudi
        • 使用 PALO 和 LakeSoul
      • 数据湖构建
        • Iceberg
        • Hive
      • 数据湖分析
        • Hudi Catalog
        • 阿里云 DLF
        • Iceberg Catalog
        • Paimon Catalog
        • Hive Catalog
    • 数据表设计
      • 行业混存
      • 数据压缩
      • Schema 变更
      • 数据类型
      • 自增列
      • 概览
      • 数据库建表最佳实践
      • 冷热数据分层
        • SSD 和 HDD 层级存储
        • 远程存储
        • 冷热数据分层概述
      • 表索引
        • 倒排索引
        • 前缀索引与排序键
        • N-Gram 索引
        • BloomFilter 索引
        • 索引概述
      • 数据划分
        • 数据分桶
        • 数据分布概念
        • 动态分区
        • 自动分区
        • 手动分区
        • 常见文档
      • 数据模型
        • 使用注意
        • 模型概述
        • 主键模型
        • 明细模型
        • 聚合模型
  • 版本发布历史
    • 百度数据仓库 Palo 2.0 版本全新发布
  • SQL手册
    • 字面常量
    • 别名
    • SQL-手册
    • 数据类型
    • SQL语句
    • 注释
    • 内置函数
    • 白名单管理
    • SQL操作符
    • 内置函数
      • 聚合函数
      • 位操作函数
      • 字符串函数
      • 条件函数
      • 数学函数
      • JSON解析函数
      • 类型转换函数
      • 格式转换函数
      • 通用函数
      • 时间和日期函数
      • BITMAP函数
      • 窗口函数
      • 哈希函数
      • HLL函数
    • 语法帮助
      • DML
        • INSERT
        • ROUTINE-LOAD
        • RESTORE
        • SELECT-INTO-OUTFILE
        • ALTER-ROUTINE-LOAD
        • BROKER-LOAD
        • BACKUP
        • EXPORT
        • STREAM-LOAD
      • DDL
        • CREATE-FILE
        • DROP-RESOURCE
        • CREATE-RESOURCE
        • CREATE-MATERIALIZED-VIEW
        • DROP-RESROUCE
        • CREATE-TABLE
        • DROP-REPOSITORY
        • CREATE-REPOSITORY
        • CREATE-ODBC-TABLE
      • 信息查看语句
        • SHOW-BACKUP
        • SHOW-ALTER-TABLE-MATERIALIZED-VIEW
        • SHOW-SNAPSHOT
        • SHOW-ROUTINE-LOAD
        • SHOW-CREATE-ROUTINE-LOAD
        • SHOW-ROLES
        • SHOW-GRANTS
        • SHOW-EXPORT
        • SHOW-ROUTINE-LOAD-TASK
        • SHOW-REPOSITORIES
        • SHOW-LOAD
        • SHOW-RESOURCES
        • SHOW-RESTORE
        • SHOW-PROPERTY
        • SHOW-FILE
      • 辅助命令
        • PAUSE-ROUTINE-LOAD
        • STOP-ROUTINE-LOAD
        • ALTER-ROUTINE-LOAD
        • CANCEL-LOAD
        • RESUME-ROUTINE-LOAD
      • 账户管理
        • SET-PROPERTY
        • REVOKE
        • GRANT
        • CREATE-ROLE
        • DROP-ROLE
        • CREATE-USER
        • DROP-USER
        • SET-PASSWORD
  • 快速入门
    • 快速上手
    • 存算分离
    • 存算一体
  • 典型实践
    • 如何开启Debug日志
    • 导入分析
    • 查询分析
  • 操作手册
    • 权限和子用户
    • 存算一体
      • 连接集群
      • 查询分析
      • 监控告警
        • 监控指标
        • 告警配置
      • 备份恢复
        • 通过管理页面备份与恢复
        • 备份与恢复
      • 权限管理
        • 集群权限
        • 控制台权限
      • 集群管理
        • 集群创建
        • 停止与删除
        • 重置管理员密码
        • 集群扩缩容
        • 集群详情
    • 存算分离
      • 连接集群
      • 计算组管理
        • 重启计算组
        • 创建计算组
      • 监控告警
        • 监控指标
        • 告警配置
      • 权限管理
        • 集群权限
        • 控制台权限
      • 集群管理
        • 停止与删除
        • 创建集群
        • 重置管理员密码
        • 集群详情
  • 服务等级协议SLA
    • 服务等级协议(SLA)v1.0
  • 产品概述
    • 系统架构
    • 产品特点
    • 产品介绍
  • 视频专区
    • 操作指南
    • 产品简介
  • 产品定价
    • 预付费
    • 计费说明
    • 后付费
所有文档
menu
没有找到结果,请重新输入

数据仓库 PALO

  • 功能发布记录
  • 操作手册1
    • LDAP认证
    • 时区
    • 使用S3-SDK访问对象存储
    • 权限管理
    • 物化视图
    • 变量
    • 资源管理
    • 数据更新与删除
      • 标记删除
      • Sequence-Column
      • 数据更新
      • 数据删除
    • 备份与恢复
      • 备份与恢复
    • 数据导出1
      • SELECT INTO OUTFILE
      • MySQL Dump
      • 数据导出概述
      • Export
    • 数据导出
      • 全量数据导出
      • 导出查询结果集
      • 导出总览
      • 导出数据到外部表
    • 查询加速1
      • 查询缓存
      • 物化视图
        • 同步物化视图
        • 物化视图概览
        • 异步物化视图
          • 异步物化视图常见问题
          • 最佳实践
          • 异步物化视图概述
          • 创建、查询与维护异步物化视图
    • 数据导入
      • JSON格式数据导入说明
      • 导入本地数据
      • 导入BOS中的数据
      • 导入事务和原子性
      • 通过外部表同步数据
      • 使用JDBC同步数据
      • 列的映射、转换与过滤
      • 订阅Kafka日志
      • 严格模式
      • 导入总览
    • 数据更新与删除1
      • 事务
      • 数据更新
        • 主键模型的导入更新
        • 主键模型的 Update 更新
        • 数据更新概述
        • 主键模型的更新并发控制
        • 聚合模型的导入更新
      • 数据删除
        • 删除操作概述
        • Truncate 操作
        • 表原子替换
        • Delete 操作
        • 基于导入的批量删除
        • 临时分区
    • 数据导入1
      • 高并发导入优化(Group Commit)
      • 导入概览
      • 异常数据处理
      • 导入高可用性
      • 导入时实现数据转换
      • 数据源
        • Kafka
        • S3 兼容存储
        • 从其他 TP 系统迁移数据
        • HDFS
        • 从其他 AP 系统迁移数据
        • Flink
        • 本地文件
      • 导入方式
        • Broker Load
        • MySQL Load
        • Insert Into Values
        • Stream Load
        • Insert Into Select
        • Routine Load
      • 文件格式
        • CSV
        • JSON
        • Parquet
        • ORC
      • 复杂数据类型
        • MAP
        • Variant
        • JSON
        • STRUCT
        • Bitmap
        • HLL
        • ARRAY
  • 开发指南
    • 迁移ClickHouse数据
    • Doris集群间数据迁移
    • 数据更新与删除
      • 事务
      • 数据更新
        • 主键模型的导入更新
        • 主键模型的 Update 更新
        • 数据更新概述
        • 主键模型的更新并发控制
        • 聚合模型的导入更新
      • 数据删除
        • 删除操作概述
        • Truncate 操作
        • 表原子替换
        • Delete 操作
        • 基于导入的批量删除
        • 临时分区
    • 查询加速
      • 查询缓存
      • Colocation Join
      • 高并发点查
      • Hint
        • Hint 概述
        • Leading Hint
        • Distribute Hint
      • 物化视图
        • 同步物化视图
        • 物化视图概览
        • 异步物化视图
          • 异步物化视图常见问题
          • 最佳实践
          • 异步物化视图概述
          • 创建、查询与维护异步物化视图
      • 高效去重
        • BITMAP 精准去重
        • HLL 近似去重
      • 优化技术原理
        • TOPN 查询优化
        • 统计信息
        • Pipeline 执行引擎
        • 查询优化器介绍
        • Runtime Filter
      • 查询调优概述
        • 调优概述
        • 诊断工具
        • 分析工具
        • 调优流程
      • 查询优化实践
        • 常见调优参数
        • 计划调优
          • 使用 Hint 控制代价改写
          • 使用异步物化视图透明改写
          • 使用 Leading Hint 控制 Join 顺序
          • 优化表 Schema 设计
          • 使用分区裁剪优化扫表
          • 优化索引设计和使用
          • 使用 Hint 调整 Join Shuffle 方式
          • DML 计划调优
          • 使用 Colocate Group 优化 Join
          • 使用同步物化视图透明改写
          • 使用 SQL Cache 加速查询
        • 执行调优
          • 数据倾斜处理
          • RuntimeFilter 的等待时间调整
          • 并行度调优
    • 数据查询
      • 连接(JOIN)
      • 子查询
      • 复杂类型查询
      • 列转行 (Lateral View)
      • MySQL 兼容性
      • 聚合多维分析
      • 分析函数(窗口函数)
      • 公用表表达式(CTE)
      • 自定义函数
        • 别名函数
        • Java UDF, UDAF, UDTF
    • 数据导出
      • SELECT INTO OUTFILE
      • MySQL Dump
      • 最佳实践
      • 数据导出概述
      • Export
    • 数据导入
      • 高并发导入优化(Group Commit)
      • 异常数据处理
      • 导入高可用性
      • 导入时实现数据转换
      • 导入最佳实践
      • 数据源
        • Kafka
        • Snowflake
        • S3 兼容存储
        • Google Cloud Storage
        • 从其他 TP 系统迁移数据
        • Azure Storage
        • 腾讯云 COS
        • MinIO
        • HDFS
        • 阿里云 OSS
        • 华为云 OBS
        • 从其他 AP 系统迁移数据
        • Flink
        • Redshift
        • Amazon S3
        • 本地文件
        • BigQuery
      • 导入方式
        • Broker Load
        • MySQL Load
        • Insert Into Values
        • Stream Load
        • Insert Into Select
        • Routine Load
      • 文件格式
        • CSV
        • JSON
        • Parquet
        • ORC
      • 复杂数据类型
        • MAP
        • Variant
        • JSON
        • STRUCT
        • Bitmap
        • HLL
        • ARRAY
    • BI工具接入
      • Sugar
      • Navicat
      • Tableau
      • DBeaver
      • 永洪BI
      • FineBI(帆软)
    • 数据库连接
      • 通过 MySQL 协议连接
      • 基于 Arrow Flight SQL 的高速数据传输链路
    • 湖仓一体
      • 分析 S3或HDFS 上的文件
      • 湖仓一体概述
      • SQL 方言兼容
      • 弹性计算节点
      • 云服务认证接入
      • 元数据缓存
      • 外表统计信息
      • 数据缓存
      • 数据库分析
        • MySQL
        • JDBC Catalog
        • Oracle
        • OceanBase
        • SAP HANA
        • 阿里云 MaxCompute
        • ClickHouse
        • PostgreSQL
        • IBM Db2
        • SQL Server
        • Elasticsearch
      • 湖仓一体最佳实践
        • 使用 PALO 和 Paimon
        • 使用 PALO 和 Iceberg
        • 使用 PALO 和 Hudi
        • 使用 PALO 和 LakeSoul
      • 数据湖构建
        • Iceberg
        • Hive
      • 数据湖分析
        • Hudi Catalog
        • 阿里云 DLF
        • Iceberg Catalog
        • Paimon Catalog
        • Hive Catalog
    • 数据表设计
      • 行业混存
      • 数据压缩
      • Schema 变更
      • 数据类型
      • 自增列
      • 概览
      • 数据库建表最佳实践
      • 冷热数据分层
        • SSD 和 HDD 层级存储
        • 远程存储
        • 冷热数据分层概述
      • 表索引
        • 倒排索引
        • 前缀索引与排序键
        • N-Gram 索引
        • BloomFilter 索引
        • 索引概述
      • 数据划分
        • 数据分桶
        • 数据分布概念
        • 动态分区
        • 自动分区
        • 手动分区
        • 常见文档
      • 数据模型
        • 使用注意
        • 模型概述
        • 主键模型
        • 明细模型
        • 聚合模型
  • 版本发布历史
    • 百度数据仓库 Palo 2.0 版本全新发布
  • SQL手册
    • 字面常量
    • 别名
    • SQL-手册
    • 数据类型
    • SQL语句
    • 注释
    • 内置函数
    • 白名单管理
    • SQL操作符
    • 内置函数
      • 聚合函数
      • 位操作函数
      • 字符串函数
      • 条件函数
      • 数学函数
      • JSON解析函数
      • 类型转换函数
      • 格式转换函数
      • 通用函数
      • 时间和日期函数
      • BITMAP函数
      • 窗口函数
      • 哈希函数
      • HLL函数
    • 语法帮助
      • DML
        • INSERT
        • ROUTINE-LOAD
        • RESTORE
        • SELECT-INTO-OUTFILE
        • ALTER-ROUTINE-LOAD
        • BROKER-LOAD
        • BACKUP
        • EXPORT
        • STREAM-LOAD
      • DDL
        • CREATE-FILE
        • DROP-RESOURCE
        • CREATE-RESOURCE
        • CREATE-MATERIALIZED-VIEW
        • DROP-RESROUCE
        • CREATE-TABLE
        • DROP-REPOSITORY
        • CREATE-REPOSITORY
        • CREATE-ODBC-TABLE
      • 信息查看语句
        • SHOW-BACKUP
        • SHOW-ALTER-TABLE-MATERIALIZED-VIEW
        • SHOW-SNAPSHOT
        • SHOW-ROUTINE-LOAD
        • SHOW-CREATE-ROUTINE-LOAD
        • SHOW-ROLES
        • SHOW-GRANTS
        • SHOW-EXPORT
        • SHOW-ROUTINE-LOAD-TASK
        • SHOW-REPOSITORIES
        • SHOW-LOAD
        • SHOW-RESOURCES
        • SHOW-RESTORE
        • SHOW-PROPERTY
        • SHOW-FILE
      • 辅助命令
        • PAUSE-ROUTINE-LOAD
        • STOP-ROUTINE-LOAD
        • ALTER-ROUTINE-LOAD
        • CANCEL-LOAD
        • RESUME-ROUTINE-LOAD
      • 账户管理
        • SET-PROPERTY
        • REVOKE
        • GRANT
        • CREATE-ROLE
        • DROP-ROLE
        • CREATE-USER
        • DROP-USER
        • SET-PASSWORD
  • 快速入门
    • 快速上手
    • 存算分离
    • 存算一体
  • 典型实践
    • 如何开启Debug日志
    • 导入分析
    • 查询分析
  • 操作手册
    • 权限和子用户
    • 存算一体
      • 连接集群
      • 查询分析
      • 监控告警
        • 监控指标
        • 告警配置
      • 备份恢复
        • 通过管理页面备份与恢复
        • 备份与恢复
      • 权限管理
        • 集群权限
        • 控制台权限
      • 集群管理
        • 集群创建
        • 停止与删除
        • 重置管理员密码
        • 集群扩缩容
        • 集群详情
    • 存算分离
      • 连接集群
      • 计算组管理
        • 重启计算组
        • 创建计算组
      • 监控告警
        • 监控指标
        • 告警配置
      • 权限管理
        • 集群权限
        • 控制台权限
      • 集群管理
        • 停止与删除
        • 创建集群
        • 重置管理员密码
        • 集群详情
  • 服务等级协议SLA
    • 服务等级协议(SLA)v1.0
  • 产品概述
    • 系统架构
    • 产品特点
    • 产品介绍
  • 视频专区
    • 操作指南
    • 产品简介
  • 产品定价
    • 预付费
    • 计费说明
    • 后付费
  • 文档中心
  • arrow
  • 数据仓库PALO
  • arrow
  • 操作手册1
  • arrow
  • 数据更新与删除
  • arrow
  • Sequence-Column
本页目录
  • 实现原理
  • 启用 Sequence Column 功能
  • 在导入中使用顺序列功能
  • Stream Load
  • Broker Load
  • routine load
  • 使用示例

Sequence-Column

更新时间:2025-08-21

UNIQUE KEY 模型下,PALO 会根据主键自动的进行数据的更新。但是当同一批次导入数据中出现相同主键的行时,PALO 无法判断其先后顺序,则可能出现更新行为不一致的问题。

而在某些数据同步场景下,需要保证数据能够按顺序更新,而 Sequence Column 功能就是为了解决这一问题。

实现原理

Sequence Column 仅支持 UNQIUE KEY 模型的表。其原理是在表中增加一个隐藏列 __DORIS_SEQUENCE_COL__ 。该列的类型由用户在建表时指定。

在导入的源数据中,用户需额外增加一个顺序列,其类型为建表时指定的 __DORIS_SEQUENCE_COL__ 的类型。PALO 内部会根据这个顺序列的值,决定数据的前后顺序,进行数据更新。

启用 Sequence Column 功能

该功能是 PALO 3.10 版本之后引入的新功能。

  1. 创建新表

    在创建表时,我们可以通过如下方式设置 Sequence Column:

    SQL
    1CREATE TABLE order_table
    2(
    3    order_id BIGINT,
    4    order_type VARCHAR(8),
    5    order_status VARCHAR(32)
    6)
    7UNIQUE KEY(order_id)
    8DISTRIBUTED BY HASH(order_id) BUCKETS 8
    9PROPERTIES
    10(
    11    "function_column.sequence_type" = 'Date'
    12);

    这里我们在 PROPERTIES 中指定了 Sequence Column 的类型为 Date,即开启了该功能。更多说明,可参阅 CREATE TABLE 命令手册。

  2. 为旧表开启该功能

    对于 3.10 之前版本创建的 UNIQUE KEY 的表,可以通过以下命令开启该功能:

    SQL
    1ALTER TABLE order_table ENABLE FEATURE "SEQUENCE_LOAD"
    2WITH PROPERTIES ("function_column.sequence_type" = "Date")

    这个操作本质上是一个 Schema Change 操作,执行后,需通过 SHOW ALTER TABLE COLUMN 查看作业执行进度。

如果想确定一个表是否已开启标记删除功能,可以通过 设置一个变量来显示隐藏列

SQL
1SET show_hidden_columns=true`

之后使用 DESC tablename,如果输出中有 __DORIS_SEQUENCE_COL__ 列,则表示该表已开启该功能。

在导入中使用顺序列功能

在不同的数据导入方式中使用的方式略有不同。该功能目前支持以下数据导入方式:

  • STREAM LOAD
  • BROKER LOAD
  • ROUTINE LOAD

具体使用语法请参阅各自的文档,这里仅对不同导入方式进行简单的示例说明。假设原始导入数据如下:

Plain Text
11000,TYPE#1,PENDING,2020-10-01
21001,TYPE#2,PAID,2020-10-02
31002,TYPE#3,PENDING,2020-10-03
41001,TYPE#2,PENDING,2020-10-01
51004,TYPE#3,PAID,2020-10-03

Stream Load

Bash
1curl --location-trusted -u root \
2-H "columns: order_id, order_type, order_status, source_sequence"
3-H "function_column.sequence_col: source_sequence" \
4-T data.txt http://host:port/api/example_db/order/_stream_load

我们在 Header 的 columns 属性中将第四列命名为 source_sequence,之后在 function_column.sequence_col 属性中将该列设置的顺序列。

这样,源数据中的 1001 这个订单的最终状态将会是 PAID.

Broker Load

SQL
1LOAD LABEL example_db.label1
2(
3    DATA INFILE("hdfs://host:port/user/data/*/test.txt")
4    INTO TABLE `order`
5    COLUMNS TERMINATED BY ","
6    (order_id, order_type, order_status, source_sequence)
7    ORDER BY source_sequence
8)
9WITH BROKER 'bos'
10(
11    ...
12);

通过 ORDER BY 子句配置顺序列。

routine load

SQL
1CREATE ROUTINE LOAD example_db.job_name ON order 
2COLUMNS(order_id, order_type, order_status, source_sequence),
3ORDER BY source_sequence
4PROPERTIES
5(
6    ...
7)
8FROM KAFKA
9(
10    ...
11);

通过 ORDER BY 子句配置顺序列。

使用示例

下面以 Stream Load 为例,通过一个实际的示例展示顺序列的使用方式和效果。

  1. 创建支持 Sequence Column 的表

    SQL
    1CREATE TABLE test_table
    2(
    3    user_id     BIGINT,
    4    date        DATE,
    5    group_id    BIGINT,
    6    keyword     VARCHAR(128)
    7)
    8UNIQUE KEY(user_id, date, group_id)
    9DISTRIBUTED BY HASH(user_id, date) BUCKETS 10
    10PROPERTIES
    11(
    12    "function_column.sequence_type" = 'Date'
    13)

    之后我们可以查看到隐藏列:

    SQL
    1mysql> set show_hidden_columns=true;
    2Query OK, 0 rows affected (0.00 sec)
    3mysql> desc test_table;
    4+------------------------+--------------+------+-------+---------+---------+
    5| Field                  | Type         | Null | Key   | Default | Extra   |
    6+------------------------+--------------+------+-------+---------+---------+
    7| user_id                | BIGINT       | Yes  | true  | NULL    |         |
    8| date                   | DATE         | Yes  | true  | NULL    |         |
    9| group_id               | BIGINT       | Yes  | true  | NULL    |         |
    10| keyword                | VARCHAR(128) | Yes  | false | NULL    | REPLACE |
    11| __DORIS_SEQUENCE_COL__ | DATE         | Yes  | false | NULL    | REPLACE |
    12+------------------------+--------------+------+-------+---------+---------+
    135 rows in set (0.00 sec)
  2. 正常导入数据

    导入如下数据:

    Plain Text
    11,2020-02-22,1,2020-02-22,a
    21,2020-02-22,1,2020-02-22,b
    31,2020-02-22,1,2020-03-05,c
    41,2020-02-22,1,2020-02-26,d
    51,2020-02-22,1,2020-02-22,e
    61,2020-02-22,1,2020-02-22,b

    将 Sequence Column 映射为源数据中的第4列,modify_date 列。

    Bash
    1curl --location-trusted -u root: \
    2-H "column_separator: ," \
    3-H "columns: user_id, date, group_id, modify_date, keyword" \
    4-H "function_column.sequence_col: modify_date" \
    5-T testData http://host:port/api/test/test_table/_stream_load

    结果为

    SQL
    1mysql> select * from test_table;
    2+---------+------------+----------+---------+
    3| user_id | date       | group_id | keyword |
    4+---------+------------+----------+---------+
    5|       1 | 2020-02-22 |        1 | c       |
    6+---------+------------+----------+---------+

    我们也可以查看隐藏列的值:

    SQL
    1mysql> set show_hidden_columns=true;
    2Query OK, 0 rows affected (0.01 sec)
    3
    4mysql> select * from test_table;
    5+---------+------------+----------+---------+------------------------+
    6| user_id | date       | group_id | keyword | __DORIS_SEQUENCE_COL__ |
    7+---------+------------+----------+---------+------------------------+
    8|       1 | 2020-02-22 |        1 | c       | 2020-03-05             |
    9+---------+------------+----------+---------+------------------------+

    在这次导入中,因 Sequence Column 的值(也就是 modify_date 中的值)中 2020-03-05 为最大值,所以 keyword 列中最终保留了 c。

  3. 替换顺序的保证

    上述步骤完成后,接着导入如下数据:

    Plain Text
    11,2020-02-22,1,2020-02-22,a
    21,2020-02-22,1,2020-02-23,b

    查询数据

    SQL
    1MySQL [test]> select * from test_table;
    2+---------+------------+----------+---------+
    3| user_id | date       | group_id | keyword |
    4+---------+------------+----------+---------+
    5|       1 | 2020-02-22 |        1 | c       |
    6+---------+------------+----------+---------+

    由于新导入的数据的 Sequence Column 都小于表中已有的值,则没有替换发生。

    再尝试导入如下数据:

    Plain Text
    11,2020-02-22,1,2020-02-22,a
    21,2020-02-22,1,2020-03-23,w

    查询数据:

    SQL
    1MySQL [test]> select * from test_table;
    2+---------+------------+----------+---------+
    3| user_id | date       | group_id | keyword |
    4+---------+------------+----------+---------+
    5|       1 | 2020-02-22 |        1 | w       |
    6+---------+------------+----------+---------+

    由于新导入的数据的 Sequence Column 值大于表中的值,所以数据被替换。

上一篇
标记删除
下一篇
数据更新